首页> 外文期刊>International Journal of Heat and Fluid Flow >Localised dynamics of laminar pulsatile flow in a rectangular channel
【24h】

Localised dynamics of laminar pulsatile flow in a rectangular channel

机译:矩形通道中层流脉动流的局部动力学

获取原文
获取原文并翻译 | 示例
       

摘要

The exploitation of flow pulsation in low-Reynolds number micro/minichannel flows is a potentially useful technique for enhancing cooling of high power photonics and electronics devices. Although the mechanical and thermal problems are inextricably linked, decoupling of the local instantaneous parameters provides insight into underlying mechanisms. The current study performs complementary experimental and analytical analyses to verify novel representations of the pulsating channel flow solutions, which conveniently decompose hydrodynamic parameters into amplitude and phase values relative to a prescribed flow rate, for sinusoidally-pulsating flows of Womersley numbers 1.4 <= Wo <= 7.0 and a fixed ratio of oscillating flow rate amplitude to steady flow rate equal to 0.9. To the best of the authors' knowledge, the velocity measurements - taken using particle image velocimetry - constitute the first experimental verification of theory over two dimensions of a rectangular channel. Furthermore, the wall shear stress measurements add to the very limited number of studies that exist for any vessel geometry. The amplification of the modulation component of wall shear stress relative to a steady flow (with flow rate equal to the amplitude of the oscillating flow rate) is an important thermal indicator that may be coupled with future heat transfer measurements. The positive half-cycle time- and space-averaged value is found to increase with frequency owing to growing phase delays and higher amplitudes in the near-wall region of the velocity profiles. Furthermore, the local time-dependent amplification varies depending on the regime of unsteadiness: (i) For quasi-steady flows, the local values are similar during acceleration and deceleration though amplification is greater near the corners over the interval 0-0.5 pi (ii) At intermediate frequencies, local behaviour begins to differ during accelerating and decelerating periods and the interval of greater wall shear stress near the corners lengthens. (iii) Plug-like flows experience universally high amplifications, with wall shear stress greater near the corners for the majority of the positive half cycle. The overall fluid mechanical performance of pulsating flow, measured by the ratio of bulk mean wall shear stress and pressure gradient amplifications, is found to reduce from an initial value of 0.97 at Wo = 1.4 to 0.28 at Wo = 7.0, demonstrating the increasing work input required to overcome inertia. (C) 2017 Elsevier Inc. All rights reserved.
机译:低雷诺数微通道/微通道流中流动脉动的利用是增强高功率光子学和电子设备冷却的潜在有用技术。尽管机械和热学问题有着千丝万缕的联系,但局部瞬时参数的解耦仍然可以深入了解潜在的机理。当前的研究进行了补充性的实验和分析分析,以验证脉动通道流解的新颖表示形式,该脉动通道流解可以方便地将流体力学参数分解为相对于规定流量的振幅和相位值,用于Womersley数为1.4 <= Wo < = 7.0,并且振荡流量幅度与稳定流量的固定比率等于0.9。据作者所知,使用粒子图像测速仪进行的速度测量构成了矩形通道二维上理论的首次实验验证。此外,壁剪应力测量增加了针对任何容器几何形状的研究数量。相对于稳定流量(流量等于振荡流量幅度)的壁面剪应力调制分量的放大是重要的热指示器,可与将来的传热测量结合使用。由于速度曲线近壁区域中相位延迟的增加和幅度的增大,正半周期时间和空间平均值的正值随频率增加。此外,局部时间相关的放大率随不稳定状态而变化:(i)对于准稳定流,在加速和减速期间,局部值相似,尽管在拐角处0-0.5 pi范围内放大率更大(ii )在中频处,在加速和减速期间,局部行为开始有所不同,并且在拐角附近较大的壁剪应力的间隔延长。 (iii)塞状流普遍经历高放大倍率,在大部分正半周期内,拐角附近的壁切应力更大。通过整体平均壁切应力与压力梯度放大率的比值测得的脉动流的整体流体力学性能已从Wo = 1.4时的0.97的初始值降低到Wo = 7.0时的0.28的初始值,证明了增加的功输入需要克服惯性。 (C)2017 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者单位

    Trinity Coll Dublin, Dept Mech & Mfg Engn, Dublin 2, Ireland;

    Trinity Coll Dublin, Dept Mech & Mfg Engn, Dublin 2, Ireland;

    Alcatel Lucent Ireland, Bell Labs Res, Thermal Management Res Grp, Efficient Energy Transfer nET Dept, Blanchardstown Business & Technol Pk, Dublin 15, Ireland;

    Alcatel Lucent Ireland, Bell Labs Res, Thermal Management Res Grp, Efficient Energy Transfer nET Dept, Blanchardstown Business & Technol Pk, Dublin 15, Ireland;

    Trinity Coll Dublin, Dept Mech & Mfg Engn, Dublin 2, Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号