首页> 外文期刊>International journal of geomechanics >Theoretical Analysis and Experimental Research on Multiscale Mechanical Properties of Soil
【24h】

Theoretical Analysis and Experimental Research on Multiscale Mechanical Properties of Soil

机译:土多尺度力学特性的理论分析与试验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The skeleton of soil, which consists of soil particles at various scales, is a complex granular material and displays multiscale and hierarchical mechanical properties. The coupling effects of deformations at different scale levels of the soil structures have great influence on the macroscale mechanical behaviors of the soil. According to the scale divisions of soil and the physical and mechanical effects generated by the interactions between soil particles at different scales, a soil cell element that can describe the internal material information and particle characteristics of soil was constructed. On the basis of this soil cell element, a soil cell element model that can characterize the multiscale mechanical properties of soil is proposed. A series of unconsolidated and undrained triaxial compression tests on saturated, remolded soil samples with a variety of particle combinations was designed to analyze the proposed soil cell element model. The results show that the macrostrength of soil increased with an increase in the density of coordinated microcracks and effective strain gradient. The relationship between the macrostrength of soil and each of these two parameters can be presented as a parabolic function, respectively. The soil cell element model, which establishes the relationship between macrostrength and the intrinsic length scale and the effective strain gradient, can reproduce and predict the multiscale mechanical properties of soil. In the soil cell element model, the intrinsic length scale is a reflection of the geometrical morphology of microcracks, and the effective strain gradient is a reflection of the shape distortion of the mesoscale soil cell element. The experimental data can be well fitted to the soil cell element model. These research results are significant for the development of a multiscale theoretical framework that links different coupling scales.
机译:由不同尺度的土壤颗粒组成的土壤骨架是一种复杂的颗粒状材料,具有多尺度和分级的机械特性。不同尺度水平的土壤结构的变形耦合效应对土壤的宏观力学行为有很大的影响。根据土壤的尺度划分和土壤颗粒在不同尺度上的相互作用所产生的物理和机械效应,构建了一种能够描述土壤内部物质信息和颗粒特征的土壤细胞单元。在此土壤单元元的基础上,提出了可表征土壤多尺度力学特性的土壤单元元模型。设计了一系列饱和,重塑的,具有多种颗粒组合的土壤样品的非固结和不排水的三轴压缩试验,以分析所提出的土壤细胞单元模型。结果表明,土壤宏观强度随着配位微裂纹密度的增加和有效应变梯度的增加而增加。土壤的宏观强度与这两个参数中的每一个之间的关系可以分别表示为抛物线函数。建立宏观强度与固有长度尺度和有效应变梯度之间关系的土壤细胞单元模型,可以再现和预测土壤的多尺度力学性能。在土壤细胞单元模型中,固有长度尺度反映了微裂纹的几何形态,有效应变梯度反映了中尺度土壤单元元素的形状变形。实验数据可以很好地拟合土壤细胞单元模型。这些研究结果对于建立连接不同耦合尺度的多尺度理论框架具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号