...
首页> 外文期刊>International Journal of Fracture >Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials
【24h】

Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials

机译:断裂力学概念在骨和类骨材料的分层生物力学中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Fracture mechanics concepts are applied to gain some understanding of the hierarchical nanocomposite structures of hard biological tissues such as bone, tooth and shells. At the most elementary level of structural hierarchy, bone and bone-like materials exhibit a generic structure on the nanometer length scale consisting of hard mineral platelets arranged in a parallel staggered pattern in a soft protein matrix. The discussions in this paper are organized around the following questions: (1) The length scale question: why is nanoscale important to biological materials? (2) The stiffness question: how does nature create a stiff composite containing a high volume fraction of a soft material? (3) The toughness question: how does nature build a tough composite containing a high volume fraction of a brittle material? (4) The strength question: how does nature balance the widely different strengths of protein and mineral? (5) The optimization question: Can the generic nanostructure of bone and bone-like materials be understood from a structural optimization point of view? If so, what is being optimized? What is the objective function? (6) The buckling question: how does nature prevent the slender mineral platelets in bone from buckling under compression? (7) The hierarchy question: why does nature always design hierarchical structures? What is the role of structural hierarchy? A complete analysis of these questions taking into account the full biological complexities is far beyond the scope of this paper. The intention here is only to illustrate some of the basic mechanical design principles of bone-like materials using simple analytical and numerical models. With this objective in mind, the length scale question is addressed based on the principle of flaw tolerance which, in analogy with related concepts in fracture mechanics, indicates that the nanometer size makes the normally brittle mineral crystals insensitive to cracks-like flaws. Below a critical size on the nanometer length scale, the mineral crystals fail no longer by propagation of pre-existing cracks, but by uniform rupture near their limiting strength. The robust design of bone-like materials against brittle fracture provides an interesting analogy between Darwinian competition for survivability and engineering design for notch insensitivity. The follow-up analysis with respect to the questions on stiffness, strength, toughness, stability and optimization of the biological nanostructure provides further insights into the basic design principles of bone and bone-like materials. The staggered nanostructure is shown to be an optimized structure with the hard mineral crystals providing structural rigidity and the soft protein matrix dissipating fracture energy. Finally, the question on structural hierarchy is discussed via a model hierarchical material consisting of multiple levels of self-similar composite structures mimicking the nanostructure of bone. We show that the resulting “fractal bone”, a model hierarchical material with different properties at different length scales, can be designed to tolerate crack-like flaws of multiple length scales.
机译:应用断裂力学概念来获得对诸如骨头,牙齿和贝壳等硬生物组织的分层纳米复合结构的一些理解。在结构层次的最基本层次上,骨骼和类骨材料在纳米级尺度上显示出一种通用结构,该结构由以平行交错模式排列在软蛋白基质中的硬质矿物血小板组成。本文的讨论围绕以下问题进行组织:(1)长度尺度问题:为什么纳米尺度对生物材料很重要? (2)刚度问题:自然界如何产生包含高体积分数的软质材料的硬质复合材料? (3)韧性问题:自然界如何构建包含高体积分数的脆性材料的韧性复合材料? (4)强度问题:自然界如何平衡蛋白质和矿物质的千差万别? (5)优化问题:可以从结构优化的角度理解骨骼和类骨材料的一般纳米结构吗?如果是这样,正在优化什么?目标函数是什么? (6)屈曲问题:自然如何防止骨骼中细长的矿物血小板在受压下屈曲? (7)层次结构问题:为什么自然总是设计层次结构?结构层次结构的作用是什么?考虑到完整的生物学复杂性,对这些问题的完整分析远远超出了本文的范围。这里的意图只是使用简单的分析和数值模型来说明类骨材料的一些基本机械设计原理。考虑到这一目标,基于裂纹容忍原理解决了长度尺度问题,该原理与断裂力学中的相关概念类似,表明纳米尺寸使通常易碎的矿物晶体对裂纹状裂纹不敏感。在纳米长度尺度上的临界尺寸以下,矿物晶体不再由于先前存在的裂纹的传播而失效,而是由于其极限强度附近的均匀破裂而失效。骨头状材料抗脆性​​断裂的坚固设计在达尔文式的生存能力竞争与缺口不敏感性的工程设计之间提供了有趣的类比。有关生物纳米结构的刚度,强度,韧性,稳定性和最优化问题的后续分析为骨骼和类骨材料的基本设计原理提供了进一步的见解。交错的纳米结构显示为一种优化的结构,其中硬质矿物晶体提供了结构刚度,而软蛋白基质耗散了断裂能。最后,通过模型分层材料讨论了有关结构分层的问题,该模型分层材料由多个级别的类似骨骼纳米结构的自相似复合结构组成。我们表明,可以设计得到的“分形骨”,一种在不同长度尺度下具有不同特性的模型层次材料,可以承受多个长度尺度的裂纹状缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号