...
首页> 外文期刊>International Journal of Engineering Science >Influence of main flow inlet configuration on mixing and flame holding in transverse injection into supersonic airstream
【24h】

Influence of main flow inlet configuration on mixing and flame holding in transverse injection into supersonic airstream

机译:主流进气口结构对超声速横向注入空气中混合和火焰保持的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical study on mixing and combustion of hydrogen transversely injected into a main airstream is performed, by solving two-dimensional full Navier-Stokes equations. The focus of this paper is to study the means of increasing the mixing and combustion efficiencies, and the flameholding capability for supersonic propulsion application by changing the main flow inlet configuration. Accordingly, the following three inlet configurations are considered: (1) A finite parallel flow with backward-facing step; when the main flow enters through a finite-width inlet of wall, the wall under the inlet acts as a backward-facing step. (2) A finite parallel flow without step; although the inlet configuration is identical to Case 1, there is no step under the inlet. (3) The infinite parallel flow; the main flow enters throughout the left boundary. As combustion modeling we have sued full chemistry between hydrogen and air consisting of eight species (H_2, O_2 H, O, OH, H_2O_, HO_2, H_2O_2) and 19 reactions shown in Table 1. The effects of inlet configurations are evaluated by calculating mixing and combustion efficiencies. The results show that a finite parallel flow with backward-facing step (Case 1) causes the highest penetration and mixing of hydrogen and provides the best flameholding region between the downstream injecting slit and backward-facing step. The effects of high penetration and mixing on combustion, and characteristics of the reacting flowfields are studied. The finite parallel flow configuration (Cases 1 and 2) makes the bow shock steeper and eventually increases the di
机译:通过求解二维完整的Navier-Stokes方程,对横向注入主气流中的氢的混合和燃烧进行了数值研究。本文的重点是研究通过改变主流进气口的配置来提高混合和燃烧效率的方法,以及用于超音速推进应用的阻焰能力。因此,考虑了以下三种入口构造:(1)有限的平行流,带有向后的台阶;当主流通过壁的有限宽度入口进入时,入口下方的壁充当向后的台阶。 (2)没有阶跃的有限平行流;尽管进样口配置与案例1相同,但进样口下方没有台阶。 (3)无限平行流;主流进入整个左边界。作为燃烧模型,我们对氢和空气之间的完全化学反应进行了化学反应,该化学反应由表1中所示的8种物质(H_2,O_2 H,O,OH,H_2O_,HO_2,H_2O_2)和19种反应组成。进气口配置的影响通过计算混合来评估和燃烧效率。结果表明,有限的平行流与后向步骤(案例1)引起氢的最大渗透和混合,并在下游注入缝隙和后向步骤之间提供最佳的阻焰区域。研究了高渗透和混合对燃烧的影响,以及反应流场的特征。有限的平行流配置(情况1和2)使船首冲击更陡,最终使di

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号