首页> 外文期刊>International Journal of Engineering Science >A multiscale magneto-thermo-mechanically coupled model for ultra-low-field induced magneto-elastocaloric effect in magnetostrictive-shape memory alloy composite system
【24h】

A multiscale magneto-thermo-mechanically coupled model for ultra-low-field induced magneto-elastocaloric effect in magnetostrictive-shape memory alloy composite system

机译:磁致节记忆合金复合系统中超低场诱导磁弹性效应的多尺度磁热机械耦合模型

获取原文
获取原文并翻译 | 示例
           

摘要

Recent experimental results show that apparent magneto-elastocaloric effect can be induced in the magnetostrictive-shape memory alloy composite system under an ultra-low magnetic field. In this paper, a multiscale theoretical model is constructed to predict the magneto-thermomechanically coupled response of such a composite system by considering the multi-field interactions among the heterogeneous constituent elements in the grain, polycrystalline aggregate and macroscopic scales. In the grain scale, for the magnetostrictive alloy (MEA), the fluctuations of stress and magnetic fields caused by the interactions among the domains are addressed by the self-consistent homogenization scheme. Adopting a probabilistic domain switching criterion based energetic analysis, a constitutive model of MEA is established. For the shape memory alloy (SMA), a crystal plasticity based thermo-mechanically coupled constitutive model is constructed in the framework of irreversible thermodynamics. The interactions among austenite phase and martensite variants are considered by the Mori-Tanaka's homogenization scheme. Thermodynamic driving force for martensite transformation and the internal heat production originated from transformation latent heat and inelastic deformation dissipation are derived from the dissipative inequality and the conservation of energy, respectively. In the polycrystalline aggregate scale, to estimate the interactions among the grains and predict the overall responses of the polycrystalline aggregates of MEA and SMA, a unified incremental magneto-thermo-mechanically coupled self-consistent homogenization scheme is developed. In the macroscopic scale, the magneto-thermo-mechanical interaction equations among the MEA rod, SMA cuboid and Al alloy frame in the composite system are derived by considering the conditions of deformation compatibility, force balance and thermodynamic equilibrium. The capability of the proposed multiscale model to describe the magneto-elastocaloric effect of MEA-SMA composite system is validated by comparing the predictions with the existing experimental data. Moreover, the influences of geometric dimension, pre-load, frame's stiffness and crystallographic orientation on the magneto-elastocaloric effect of the composite system are discussed. The proposed model provides a theoretical guidance for the optimization design of solid-state refrigeration devices in both the microscopic and macroscopic scales.
机译:最近的实验结果表明,在超低磁场下,可以在磁致伸缩形状记忆合金复合系统中诱导表观磁性弹性效果。在本文中,构造多尺度理论模型来预测这种复合体系的磁热机械耦合响应,通过考虑谷物中的多晶组分和宏观尺度的异质组成元素之间的多场相互作用。在晶粒量表中,对于磁致伸缩合金(MEA),通过自我一致的均质化方案解决了域之间的相互作用引起的应力和磁场的波动。采用基于概率的域切换标准的能量分析,建立了一个组成型模型。对于形状记忆合金(SMA),基于晶体可塑性的热机械耦合本构体型模型构建在不可逆热力学的框架中。森林矿石相和马氏体变体之间的相互作用由森林达卡纳的均质化方案考虑。马氏体转化的热力动力驱动力和源自转化潜热和无弹性变形耗散的内部热量分别来自耗散不等式和能量守恒。在多晶骨料量表中,为了估计晶粒之间的相互作用并预测MEA和SMA的多晶聚集体的整体反应,开发了统一的增量磁热机组耦合自一致均质均质化方案。在宏观刻度中,通过考虑变形兼容性,力平衡和热力学平衡的条件,通过复合系统中的MEA棒,SMA长方体和Al合金框架中的磁热机械相互作用方程。通过将预测与现有的实验数据进行比较,验证了所提出的多尺度模型来描述MEA-SMA复合系统的磁弹性效果的能力。此外,讨论了几何尺寸,预载荷,框架的刚度和晶体取向对复合体系的磁弹性效果的影响。该建议的模型提供了微观和宏观尺度中固态制冷装置的优化设计的理论指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号