首页> 外文期刊>International Journal of Engineering Science >Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures
【24h】

Micromechanical analysis of magneto-electro-thermo-elastic composite materials with applications to multilayered structures

机译:磁电热弹性复合材料的微机械分析及其在多层结构中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The method of asymptotic homogenization was used to analyze a periodic magnetoelectric smart composite structure consisting of piezoelectric and piezomagnetic phases. The asymptotic homogenization model is derived, the governing equations are determined and subsequently general expressions called unit-cell problems that can be used to determine the effective elastic, piezoelectric, piezomagnetic, thermal expansion, dielectric, magnetic permeability, magnetoelectric, pyroelectric and pyromagnetic coefficients are presented. The latter three sets of coefficients are particularly interesting in the sense that they represent product or cross-properties; they are generated in the macroscopic composite via the interaction of the different phases, but may be absent from the constituents themselves. The derived expressions pertaining to the unit-cell problems and the resultant effective coefficients are very general and are valid for any 3-D geometry of the unit cell. The model is illustrated by means of longitudinally-layered smart composites consisting of piezoelectric (Barium Titanate) and piezomagnetic (Cobalt Ferrite) constituents. Closed-form expressions for the effective properties are derived and the results are plotted vs. the volume fraction of the piezoelectric phase. Pertaining to the product properties of this particular magnetoelectric laminate, it is observed that the effective pyroelectric and pyromagnetic coefficients attain a maximum value at a BaTiO_3 volume fraction of 0.5 and maximum values for the magnetoelectric coefficients at a BaTiO_3 volume fraction of 0.4. Likewise, the maximum value of a magnetoelectric figure of merit (characterizing efficiency of energy conversion in longitudinal direction) is also attained at a volume fraction of 0.4.
机译:渐近均质化方法用于分析由压电和压电相组成的周期性磁电智能复合结构。推导渐近均质化模型,确定控制方程,随后使用称为单位单元问题的通用表达式确定有效的弹性,压电,压电,热膨胀,介电常数,磁导率,磁电,热电和热磁系数。提出了。从表示乘积或交叉特性的意义上讲,后三组系数特别有趣。它们是通过不同相的相互作用在宏观复合材料中生成的,但成分本身可能不存在。与单位晶格问题有关的推导表达式以及所得的有效系数非常通用,对单位晶格的任何3D几何形状均有效。通过纵向分层的智能复合材料对模型进行说明,该复合材料由压电(钛酸钡)和压电(钴铁氧体)组成。推导了有效特性的闭式表达式,并将结果与​​压电相的体积分数作图。关于该特定的磁电层压件的产品性能,观察到有效热电和热磁系数在BaTiO_3体积分数为0.5时达到最大值,在BaTiO_3体积分数为0.4时达到磁电系数的最大值。同样,也以0.4的体积分数获得磁电品质因数的最大值(纵向能量转换的表征效率)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号