...
首页> 外文期刊>International Journal of Earth Sciences >Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone
【24h】

Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan Shear Zone

机译:约束高喜马拉雅剪切带动粘度和普朗特数的通道流挤压模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Constraining magnitudes of mechanical and thermo-mechanical parameters of rocks and shear zones are the important goals in structural geology and tectonics (Talbot in J Struct Geol 21:949-957, 1999). Such parameters aid dynamic scaling of analogue tectonic models (Ramberg in Gravity, deformation and the Earth's crust in theory, experiments and geological applications, 2nd edn. Academic Press, London, 1981), which are useful to unravel tectonics in further details (Schultz-Ela and Walsh in J Struct Geol 24:247-275, 2002). The channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ, = Higher Himalaya) can be explained by a top-to-S/SW simple shear (i.e. the D_2 deformation) in combination with a pressure gradient induced flow against gravity. Presuming its Newtonian incompressible rheology with parallel inclined boundaries, the viscosity (μ) of this shear zone along a part of the Himalayan chain through India, Nepal and Bhutan is estimated to vary widely between ~ 10~(16) and 10~(23) Pa s, and its Prandtl number (P_r) within ~ 10~(21)-10~(28). The estimates utilized ranges of known thickness (6-58 km) of the HHSZ, that of its top subzone of ductile shear of normal shear sense (STDS_U: 0.35-9.4 km), total rate of slip of its two boundaries (0.7-131 mm year~(-1)), pressure gradient (0.02-6 kb km~(-1)), density (2.2-3.1 g cm~(-3)) and thermal diffusivity (0.5 × 10~(-6)-2.1 × 10~(-6) m s~(-2)) along the orogenic trend. Considering most of the parameters specifically for the Sutlej section (India), the calculated viscosity (μ) and the Prandtl number (P_r) of the HHSZ are deduced to be μ: ~ 10~(17)-1023 Pa s and P_r ~ 10~(22)-10~(28). The upper limits of the estimated viscosity ranges are broadly in conformity with a strong Tibetan mid-crust from where a part of the HHSZ rocks extruded. On the other hand, their complete ranges match with those for its constituent main rock types and partly with those for the superstructure and the infrastructure. The estimated mechanical and thermo-mechanical parameters of the HHSZ will help to build dynamically scaled analogue models for the Himalayan deformation of the D_2-phase.
机译:限制岩石和剪切带的机械和热机械参数的大小是结构地质学和构造学的重要目标(Talbot in J Struct Geol 21:949-957,1999)。这样的参数有助于模拟构造模型的动态缩放(在理论,实验和地质应用中的重力,变形和地壳的兰伯格,第2版,学术出版社,伦敦,1981年),这对于进一步阐明构造学很有用(Schultz- Ela和Walsh在J Struct Geol 24:247-275,2002中)。喜马拉雅山高剪切带(HHSZ,=喜马拉雅山)的河道挤压可以通过顶部至S / SW的简单剪切(即D_2变形)结合压力梯度引起的重力反作用来解释。假设其牛顿不可压缩流变学具有平行的倾斜边界,则沿着印度,尼泊尔和不丹的喜马拉雅链的一部分,该剪切带的粘度(μ)估计在〜10〜(16)和10〜(23)之间变化很大。 Pa s及其Prandtl数(P_r)在〜10〜(21)-10〜(28)之间。估算利用了HHSZ的已知厚度范围(6-58 km),正常剪力的韧性剪切顶部子区域的范围(STDS_U:0.35-9.4 km),其两个边界的总滑移率(0.7-131)毫米年〜(-1)),压力梯度(0.02-6 kb km〜(-1)),密度(2.2-3.1 g cm〜(-3))和热扩散率(0.5×10〜(-6)-沿造山运动趋势为2.1×10〜(-6)ms〜(-2))。考虑到印度Sutlej断面的大多数参数,推算出HHSZ的计算粘度(μ)和普朗特数(P_r)为μ:〜10〜(17)-1023 Pa s和P_r〜10 〜(22)-10〜(28)。估计粘度范围的上限大致与部分HHSZ岩石从此处挤出的强烈的西藏中地壳一致。另一方面,它们的完整范围与其组成的主要岩石类型相匹配,部分与上层建筑和基础设施相匹配。 HHSZ的估计机械和热机械参数将有助于建立D_2相喜马拉雅形变的动态缩放模拟模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号