首页> 外文期刊>International Journal of Computational Materials Science and Engineering >Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering
【24h】

Computational conformational antimicrobial analysis developing mechanomolecular theory for polymer biomaterials in materials science and engineering

机译:在材料科学和工程学领域中发展高分子生物材料力学分子理论的计算构象抗菌分析

获取原文
获取原文并翻译 | 示例
       

摘要

Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding picoanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpo-lar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether tri-closan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydropho-bic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.
机译:单键旋转或金字塔反转倾向于隐藏或暴露具有非键孤对电子的原子所存在的相对能量。孤对电子的可用性取决于整体分子电子分布以及周围微微/纳米环境直接极性的差异。分子的立体化学三维方面,除了具有氮原子的金字塔反转以外,还通过与氧原子上相关的孤对电子的单键旋转提供了对构象的深入了解。当电子受到保护时,势能被掩盖在能量最小值附近,从而在分子上与非极性环境相容。当电子被暴露时,最大的能量可用于极性环境相互作用。计算构象分析软件使用易于可视化的三氯化双芳族醚三氯生抗微生物聚合物添加剂的三维模型,计算了特定氧醚单键旋转过程中存在的能量分布。如图所示,波动的交替键旋转会在分子之间产生复杂的相互作用,从而为聚合物韧性提供缠结强度,或者使用非极性三氯生作为疏水增韧剂/润湿剂,破坏弱的次级键以降低树脂粘度,从而获得新的添加剂性能。此外,涉及分子在非极性-烃-膜/极性-生物-流体界面处的孤对电子的键旋转可能变得非常不稳定,无法提供自由的机械分子能量来破坏较弱的微生物膜,从而将分子膜转运到细胞中,细胞信号/识别/防御,并产生酶混合来加快反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号