首页> 外文期刊>International Journal on Communications Antenna and Propagation >Investigation and Comparison of Generalization Ability of Multi-Layer Perceptron and Radial Basis Function Artificial Neural Networks for Signal Power Loss Prediction
【24h】

Investigation and Comparison of Generalization Ability of Multi-Layer Perceptron and Radial Basis Function Artificial Neural Networks for Signal Power Loss Prediction

机译:多层感知器和径向基函数人工神经网络对信号功率损耗预测能力的研究与比较

获取原文
获取原文并翻译 | 示例
           

摘要

This research work investigates, compares and presents three different approaches to avoid poor generalization and to overcome the tendencies of over-fitting in Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) artificial neural networks, in order to enhance the prediction accuracy of signal power loss during electromagnetic signal propagation in metropolitan area using measured data from a Long-Term Evolution (LTE) network. These approaches are a variation of hidden layer neurons, early stopping and Bayesian Regularization techniques. In the variation of the hidden layer neurons in MLP network, an excellent prediction has been recorded with 40 neurons while an increase in the number of neurons leads to poor network generalization. The network shows the capability of modeling a moderate size propagation network and, for more complex networks, intermediary layers or network modifications are required. For RBF network, the generalization ability of the network increases as the network gets more complex with 70 neurons in the hidden layer giving the best prediction. Training RBF network using early stopping approach gives a better prediction with less errors compared to neuron variation in the hidden layer and Bayesian Regularization in MLP network. However, in RBF network training, there is no difference in the errors obtained when early stopping approach has been used compared to Bayesian Regularization approach. It models appropriately a complex network without signs of over-fitting, and because of its fixed three-layer architecture, there is no poor generalization resulting from architectural complexity which Bayesian regularization approach tackles.
机译:这项研究工作调查,比较并提出了三种不同的方法,以避免泛化效果差,并克服了径向基函数(RBF)和多层感知器(MLP)人工神经网络的过度拟合趋势,从而提高了预测准确性使用来自长期演进(LTE)网络的测量数据分析大城市区域电磁信号传播期间的信号功率损耗。这些方法是隐藏层神经元,早期停止和贝叶斯正则化技术的变体。在MLP网络中隐藏层神经元的变化中,已经记录了40个神经元的出色预测,而神经元数量的增加导致不良的网络泛化。该网络显示了对中等大小的传播网络进行建模的能力,对于更复杂的网络,需要中间层或网络修改。对于RBF网络,随着网络变得越来越复杂,隐藏层中的70个神经元给出了最佳预测,因此网络的泛化能力会提高。与隐藏层中的神经元变化和MLP网络中的贝叶斯正则化相比,使用早期停止方法训练RBF网络可提供更好的预测,且错误更少。但是,在RBF网络训练中,与使用贝叶斯正则化方法相比,使用早期停止方法获得的错误没有差异。它可以对复杂的网络进行适当的建模,而不会出现过度拟合的迹象,并且由于其固定的三层体系结构,因此不会因贝叶斯正则化方法所解决的体系结构复杂性而导致泛化不良。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号