首页> 外文期刊>International journal of applied ceramic technology >In-Flight Alloying of Nanocrystalline Yttria-Stabilized Zirconia Using Suspension Spray to Produce Ultra-Low Thermal Conductivity Thermal Barriers
【24h】

In-Flight Alloying of Nanocrystalline Yttria-Stabilized Zirconia Using Suspension Spray to Produce Ultra-Low Thermal Conductivity Thermal Barriers

机译:使用悬浮喷雾对纳米晶氧化钇稳定的氧化锆进行空中合金化,以产生超低导热率的热障

获取原文
获取原文并翻译 | 示例
       

摘要

Previous researchers have shown that it is possible to combine rare-earth oxides with the standard thermal barrier coating material (4.5 mol% Y_2O_3-ZrO_2 or YSZ) to form ultra-low thermal conductivity coatings using a standard powder manufacturing route. A similar approach to making low thermal conductivity coatings by adding rare-earth oxides is discussed presently, but a different manufacturing route was used. This route involved dissolving hydrated ytterbium and neodymium nitrates into a suspension of 80 nm diameter 4.5 mol% YSZ powder and ethanol. Suspension plasma spray was then used to create coatings in which the YSZ powders were alloyed with rare-earth elements while the plasma transported the melted powders to the substrate. Mass spectrometry measurements showed a YSZ coating composition, in mol%, of ZrO_2-4.4 Y_2O_3-1.4 Nd_2O_3-1.3 Yb_2O_3. The amount of Yb~(3+) and Nd~(3+) ions in the final coating was ~50% of that added to the starting suspension. Wide-angle X-ray diffraction revealed a cubic ZrO_2 phase, consistent with the incorporation of more stabilizer into the zirconia crystal structure. The total porosity in the coatings was ~35-36%, with a bulk density of 3.94 g/cm~3. Small-angle X-ray scattering measured an apparent void specific surface area of ~2.68 m /cm for the alloyed coating and ~3.19 m~2 /cm~3 for the baseline coating. Thermal conductivity (k_(th)) of the alloyed coating was ~0.8W/m/K at 800℃, as compared with ~1.5 W/m/K at 800℃ for the YSZ-only baseline coating. After 50 h at 1200℃, k_(th) increased to ~1.1 W/m/K at 800℃ for the alloyed samples, with an associated decrease in the apparent void specific surface area to ~1.55 m~2/cm~3.
机译:先前的研究人员已经表明,可以使用标准的粉末制造路线将稀土氧化物与标准的热障涂层材料(4.5 mol%Y_2O_3-ZrO_2或YSZ)结合使用,以形成超低导热率涂层。目前讨论了通过添加稀土氧化物来制备低导热率涂层的类似方法,但是使用了不同的制造途径。该方法涉及将水合的硝酸and和硝酸钕溶解在直径为80 nm的4.5 mol%YSZ粉和乙醇的悬浮液中。然后使用悬浮等离子喷涂产生涂层,在该涂层中,YSZ粉末与稀土元素形成合金,而等离子体则将熔化的粉末传输到基材上。质谱测量显示以摩尔%计的YSZ涂层组成,ZrO_2-4.4Y_2O_3-1.4Nd_2O_3-1.3Yb_2O_3。最终涂层中Yb〜(3+)和Nd〜(3+)离子的量约为添加到起始悬浮液中的〜50%。广角X射线衍射显示立方ZrO_2相,这与将更多稳定剂掺入氧化锆晶体结构一致。涂层的总孔隙率为〜35-36%,堆积密度为3.94 g / cm〜3。小角度X射线散射测得的合金涂层的表观空隙比表面积为〜2.68 m / cm,而基线涂层的表观空隙比表面积为〜3.19 m〜2 / cm〜3。合金涂层在800℃时的热导率(k_(th))为〜0.8W / m / K,而仅YSZ基线涂层在800℃时为〜1.5 W / m / K。在1200℃下50 h后,合金化样品的k_(th)在800℃下增加到〜1.1 W / m / K,表观空洞比表面积随之减小到〜1.55 m〜2 / cm〜3。

著录项

  • 来源
    《International journal of applied ceramic technology》 |2011年第6期|p.1382-1392|共11页
  • 作者单位

    School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907;

    School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907;

    School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907;

    Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6064;

    Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6064;

    Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020;

    Ames Laboratory, Iowa State University, Ames, Iowa 50011-3020;

    Argonne National Laboratory, Argonne, Illinois 60439;

    Argonne National Laboratory, Argonne, Illinois 60439;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:42:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号