首页> 外文期刊>International journal of aerospace engineering >Aerothermoelastic Analysis of a Hypersonic Vehicle Based on Thermal Modal Reconstruction
【24h】

Aerothermoelastic Analysis of a Hypersonic Vehicle Based on Thermal Modal Reconstruction

机译:基于热模态重构的高超声速飞行器气动热弹性分析

获取原文
获取原文并翻译 | 示例
       

摘要

Hypersonic vehicles operate in a severe aerodynamic heating environment, which has a significant impact on their structural dynamic characteristics. Therefore, aerodynamic heating effects cannot be ignored when performing an aeroelastic analysis for a hypersonic vehicle. However, incorporating aerodynamic heating effects into the fluid-structural coupling analysis will result in extreme computational costs. Actually, after experiencing a sustained flight in a fixed state, the vehicle will eventually reach the thermodynamic equilibrium. Thus, the aeroelastic analysis can be efficiently performed by using the structural dynamic characteristics of the heated vehicle operating in each equilibrium state. The effects of aerodynamic heating show that the modal frequencies and modal shapes of the flexible structure are bound to change significantly in comparison with the unheated structure. In this paper, a method of thermal modal reconstruction is developed in order to directly generate the structural mode shapes and frequencies within the given parameter space without having to solve a high-fidelity thermal and structural problem. Once the modal data are available, the multivariate interpolation in a tangent space to Grassmann manifold is used to generate the modal matrix at the arbitrary selected parameter point. Besides, the Kriging interpolation method is used to establish the approximate relationships between natural frequencies and sampling points. Finally, an example of an aerodynamic heated control surface structure is used to validate the effectiveness of the proposed aerothermoelastic framework. It is demonstrated that the developed thermal modal reconstruction method has good robustness, very high computational efficiency, and sufficient accuracy over a wide parametric domain.
机译:高超音速车辆在恶劣的空气动力学加热环境中运行,这对其结构动力特性产生了重大影响。因此,在对高超音速飞行器进行气动弹性分析时,不能忽视气动热效应。但是,将气动加热效应纳入流固耦合分析将导致极高的计算成本。实际上,在经历了固定状态的持续飞行之后,车辆最终将达到热力学平衡。因此,通过使用在每个平衡状态下运行的加热车辆的结构动力学特性,可以有效地进行气动弹性分析。空气动力学加热的影响表明,与未加热的结构相比,柔性结构的模态频率和模态形状必然发生显着变化。在本文中,开发了一种热模态重构方法,以直接生成给定参数空间内的结构模态形状和频率,而不必解决高保真度的热和结构问题。一旦模态数据可用,就可以在与格拉斯曼流形相切的空间中进行多元插值,以在任意选择的参数点处生成模态矩阵。此外,使用克里格插值法建立了固有频率和采样点之间的近似关系。最后,以气动加热控制表面结构为例,验证了所提出的气动热弹性框架的有效性。结果表明,所开发的热模态重构方法具有良好的鲁棒性,很高的计算效率以及在宽参数范围内的足够精度。

著录项

  • 来源
    《International journal of aerospace engineering》 |2019年第1期|8384639.1-8384639.13|共13页
  • 作者

    Chen Zhiqiang; Zhao Yonghui;

  • 作者单位

    Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China;

    Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:25:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号