首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part II: Process visualization and modeling
【24h】

Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part II: Process visualization and modeling

机译:纤维增强的过程表征及其在航空航天铝部件疲劳增强中的应用-第二部分:过程可视化和建模

获取原文
获取原文并翻译 | 示例
       

摘要

In a companion paper [1], vibrostrengthening was introduced as a fatigue life enhancement process that can be used as an alternative to shot peening. Vibrostrengthening is a modification of a typical vibratory finishing process; it maintains the workpiece fixed inside a vibrating tub filled with a granular (typically ceramic or metal) medium. The resulting interaction between granular medium and workpiece produces improved fatigue resistance. Experimental results indicate that the vibrostrengthening process produced significant improvement in fatigue resistance on baseline (as machined) samples and performance as well, if not better than shot peening. The enhanced fatigue life produced by vibrostrengthening is thought to be the result of the combined effects of the improved surface finish and the compressive residual stress field that the process produces on the workpiece’s surface. Curiously, compared to shot-peening, the velocities (and hence kinetic energy) of an individual particle impinging on the workpiece’s surface is much smaller. Yet, the levels of subsurface stresses are comparable to those seen in shot-peened specimens. This paper makes two contributions to the understanding of the vibrostrengthening process. Through an experimental study using high-speed video recordings of the granular medium and motion analysis to correlate the instantaneous dynamics of particles impinging on the workpiece, it provides evidence that a single impingement event transfers the momentum of a number of particles from the granular medium to the workpiece, thus providing a plausible explanation for the plastic deformation and the resulting compressive stress field observed after the process. It also gives estimates of the effective number of particles participating in such an event. The study of the motion of the particles relative to the workpiece also explains variations in the effectiveness of the process in producing a fatigue strength enhancement with changes in location of the workpiece within the media tub. The second contribution the paper makes is in the development of a model to predict the expected fatigue life of a workpiece, given the surface finish and the residual stress levels introduced by the vibrostrengthening process. In the companion paper [1], we concluded that the fatigue life enhancement is the result of vibrostrengthening improving the surface finish and introducing a compressive residual stress field near the surface. Therefore, we introduce a model that, if given measured values of the surface roughness and the residual stress field, can predict fatigue crack propagation and hence the life of the specimen.
机译:在同行论文[1]中,引入了玻璃纤维增​​强技术,以提高疲劳寿命,该工艺可以替代喷丸处理。振动强化是对典型振动修整过程的改进;它可以将工件固定在装有颗粒(通常是陶瓷或金属)介质的振动桶内。颗粒状介质与工件之间产生的相互作用提高了抗疲劳性。实验结果表明,如果不是比喷丸处理更好,那么在玻璃纤维强化过程中​​,基线(加工后)样品的抗疲劳性和性能也会得到显着改善。认为通过玻璃纤维强化产生的疲劳寿命延长是由于表面光洁度提高和该过程在工件表面产生的压缩残余应力场共同作用的结果。奇怪的是,与喷丸处理相比,单个粒子撞击工件表面的速度(以及动能)要小得多。但是,地下应力的水平与喷丸试样中的应力相当。本文对理解玻璃纤维增​​强过程做出了两个贡献。通过一项使用粒状介质的高速视频记录和运动分析来关联撞击在工件上的颗粒的瞬时动力学的实验研究,它提供了证据,表明单个撞击事件会将许多颗粒的动量从粒状介质转移到从而为加工后观察到的塑性变形和由此产生的压应力场提供了合理的解释。它还给出了参与此类事件的有效粒子数的估计。对颗粒相对于工件运动的研究还解释了随着介质桶内工件位置的变化,产生疲劳强度增强的过程有效性的变化。论文的第二个贡献是在模型的开发中,该模型可以预测给定的工件预期的疲劳寿命,考虑到表面光洁度和通过振动强化工艺引入的残余应力水平。在伴随论文[1]中,我们得出结论,疲劳寿命的提高是通过振动强化改善了表面光洁度并在表面附近引入了压缩残余应力场的结果。因此,我们引入一个模型,如果给定表面粗糙度和残余应力场的测量值,则可以预测疲劳裂纹的扩展,从而预测样品的寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号