首页> 外文期刊>Letters in heat and mass transfer >Parametric analysis of effective tissue thermal conductivity, thermal wave characteristic, and pulsatile blood flow on temperature distribution during thermal therapy
【24h】

Parametric analysis of effective tissue thermal conductivity, thermal wave characteristic, and pulsatile blood flow on temperature distribution during thermal therapy

机译:有效治疗过程中有效组织导热系数,热波特性和脉动血流对温度分布的参数分析

获取原文
获取原文并翻译 | 示例
           

摘要

This study examines the coupled effects of pulsatile blood flow in a thermally significant blood vessel, the effective thermal conductivity of tumor tissue, and the thermal relaxation time in solid tissues on the temperature distributions during thermal treatments. Due to the cyclic nature of blood flow as a result of the heartbeat, the blood pressure gradient along a blood vessel was modeled as a sinusoidal change to imitate a pulsatile blood flow. Considering the enhancement in the thermal conductivity of living tissues due to blood perfusion, the effective tissue thermal conductivity was investigated. Based on the finite propagation speed of heat transfer in solid tissues, a modified wave bio-heat transfer transport equation in cylindrical coordinates was used. The numerical results show that a larger relaxation time results in a higher peak temperature. In the rapid heating case I (i.e., heating power density of 100 W cm~(-3) and heating duration of 1 s) and a heartbeat frequency of 1 Hz, the maximum temperatures were 62.587 and 63.107 ℃ for thermal relaxation times of 0.464 and 6.825 s, respectively. In contrast, the same total heated energy density of 100 J cm~(-3) in a slow heating case (i.e., heating power density of 5 W cm~(-3) and heating duration of 20 s) revealed maximum temperatures of 57.724 and 61.233 ℃ for thermal relaxation times of 0.464 and 6.825 s, respectively. In rapid heating cases, the occurrence of the peak temperature exhibits a time lag due to the influence of the thermal relaxation time. In contrast, in slow heating cases, the peak temperature may occur prior to the end of the heating period. Moreover, the frequency of the pulsatile blood flow does not appear to affect the maximum temperature in solid tumor tissues.
机译:这项研究研究了热治疗重要血管中脉动血流的耦合效应,肿瘤组织的有效导热率以及实体组织在治疗过程中温度分布上的热弛豫时间。由于心跳导致血液流动的周期性,因此将沿着血管的血压梯度建模为正弦曲线变化,以模拟脉动性血液流动。考虑到血液灌注引起的活组织导热系数的提高,研究了有效的组织导热系数。基于固体组织中传热的有限传播速度,使用修正的圆柱坐标系中的生物波传热传递方程。数值结果表明,较长的弛豫时间导致较高的峰值温度。在快速加热情况I下(即,功率功率密度为100 W cm〜(-3),加热时间为1 s),心跳频率为1 Hz,热松弛时间为0.464时,最高温度分别为62.587和63.107℃。和6.825 s。相反,在缓慢加热的情况下,相同的总加热能量密度为100 J cm〜(-3)(即,加热功率密度为5 W cm〜(-3),加热时间为20 s)时,最高温度为57.724。和61.233℃的热弛豫时间分别为0.464和6.825 s。在快速加热的情况下,由于热弛豫时间的影响,峰值温度的出现表现出时间滞后。相反,在缓慢加热的情况下,峰值温度可能会在加热周期结束之前出现。而且,脉动血流的频率似乎不影响实体瘤组织中的最高温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号