Abstract A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder
首页> 外文期刊>Letters in heat and mass transfer >A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder
【24h】

A comparison study of mixed convection heat transfer of turbulent nanofluid flow in a three-dimensional lid-driven enclosure with a clockwise versus an anticlockwise rotating cylinder

机译:带有顺时针和逆时针旋转圆柱的三维盖驱动的壳体中湍流纳米流体的混合对流传热的比较研究

获取原文
获取原文并翻译 | 示例
           

摘要

AbstractA turbulent 3D mixed convective flow of pure water, H2O, and nanofluid, SiO2-H2O, inside a differentially heated moving wall enclosure containing an insulated rotating cylinder over a range of rotational speeds, −5≤Ω≤5, Reynolds numbers, 5000 and 10,000, and constant Grashof number, is numerically investigated. A cooled lid-driven top wall and a heated bottom wall are the only thermally uninsulated walls in this domain. A standard k-ε for the Unsteady Reynolds-Averaged Navier-Stokes (URANS) approach is applied to the turbulence calculation. Nusselt number, mean velocity profile, streamline, isothermal and isosurface temperatures are derived and presented in this paper to gain a better understanding of the effects of clockwise and anti-clockwise rotating cylinder directions on the heat transfer and flow patterns. Interesting changes in flow structure and heat transfer have been analysed for all rotational speeds and fluid types at both Reynolds number values. Nonlinear increases in Nusselt number have been observed by using nanofluid instead of pure water. The wall shear stress and turbulent kinetic energy profiles are found to be influenced by changing the Reynolds number and rotational speed and direction. Furthermore, incremental heat transfer rates at the walls can be achieved by increasing the cylinder rotation speeds, but these increases have weaker influences on the top wall than on the bottom wall.
机译: 摘要 纯水的湍流3D混合对流,H 2 O和纳米流体SiO 2 -H 2 O,位于加热差的移动壁内数值研究了一个外壳,该外壳包含一个绝缘的旋转圆柱体,该圆柱体的旋转速度范围为-5≤Ω≤5,雷诺数分别为5000和10,000,并且常数为Grashof数。冷却的盖驱动顶壁和加热的底壁是该区域中仅有的绝热绝热壁。非平稳雷诺平均纳维斯托克斯(URANS)方法的标准k-ε用于湍流计算。推导并在本文中推导了Nusselt数,平均速度分布,流线,等温和等温面温度,以更好地理解顺时针和逆时针旋转气缸方向对传热和流动方式的影响。对于两个雷诺数值下的所有转速和流体类型,已经分析了流动结构和传热的有趣变化。通过使用纳米流体代替纯水,已观察到Nusselt数的非线性增加。发现壁切应力和湍动能分布受到改变雷诺数以及旋转速度和方向的影响。此外,可以通过提高圆柱体的旋转速度来提高壁处的传热速率,但这些增加对顶壁的影响要小于对底壁的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号