首页> 外文期刊>International Association of Theoretical and Applied Limnoloy. Part 1, Verhandlungen, Proceedings, Travaux >Ecosystem modeling of species interactions affecting sockeye salmon production in Iliamna Lake, Bristol Bay, Alaska
【24h】

Ecosystem modeling of species interactions affecting sockeye salmon production in Iliamna Lake, Bristol Bay, Alaska

机译:影响阿拉斯加布里斯托尔湾伊利亚姆纳湖红鲑鱼生产的物种相互作用的生态系统建模

获取原文
获取原文并翻译 | 示例
           

摘要

Sockeye salmon (Oncorhynchus nerka) returns to Iliamna Lake, Bristol Bay, are unique for their historically strong cyclic nature. Prior to 1950 there were often two strong runs followed by three weak returns; in the 1980s and early 1990s there was one strong return followed by four years of weak returns. Studies to determine the mechanism for the cycles have been conducted for many years. The aim of this paper is to look at an ecosystem approach to help explain cyclic behavior and productivity differences during the peak and low years. Ecosystem models, such as the ECOPATH model developed by Christensen & Pauly (1992), help determine trophic relationships between species or species groups in the ecosystem being modeled by using mass balancing under steady-state conditions. ECOTRACE has been used to trace marine-derived nutrients through an aquatic ecosystem (WAtkinson 1998). ECOSIM, the next stage in the ECOPATH modeling project (Walters et al. 1997) can be a valuable tool for designing adaptive management experiments or looking at changes in the system from various perturbations. In anadromous lake systems, trophic structure analysis takes advantage of marine-derived nutrients spawning salmon transport into the lake system that are then dispersed throughout the system by decomposing carcasses (Larkin & Slaney 1997, Bilby et al. 1998). This dispersal of nutrients enriches the system, allows for increased general productivity, but also provides us with a tool to estimate trophic relationships of species or species groups in an ecosystem. The ratio of isotope to normal marine nitrogen, ~(15)N: ~(14)N, is specific to trophic level and, using known transfer coefficients from one trophic level to another, allows the trophic level of a species to be estimated (Minagawa & Wada 1984).
机译:红鲑鱼(Oncorhynchus nerka)返回布里斯托尔湾伊利亚姆纳湖,因其历史悠久的周期性自然而独特。在1950年之前,通常会有两次强劲的冲刺,然后是三次疲软的回报。在1980年代和1990年代初,有一次强劲的回报,然后是四年的疲软回报。确定循环机制的研究已经进行了很多年。本文的目的是研究一种生态系统方法,以帮助解释高峰和低谷时期的周期性行为和生产力差异。生态系统模型,例如Christensen&Pauly(1992)开发的ECOPATH模型,可通过在稳态条件下使用质量平衡来帮助确定正在建模的生态系统中物种或物种组之间的营养关系。 ECOTRACE已被用于通过水生生态系统追踪海洋来源的营养物(WAtkinson 1998)。 ECOSIM,ECOPATH建模项目的下一个阶段(Walters等,1997)可以成为设计自适应管理实验或从各种干扰中查看系统变化的有价值的工具。在无水湖泊系统中,营养结构分析利用了海洋来源的养分,从而将鲑鱼运输到湖泊系统中,然后通过分解cas体将其分散到整个系统中(Larkin&Slaney 1997,Bilby等人,1998)。营养素的这种分散丰富了系统,提高了总生产力,但也为我们提供了一种工具来估算生态系统中物种或物种组的营养关系。同位素与正常海洋氮的比率〜(15)N:〜(14)N特定于营养级,并且使用从一种营养级到另一种营养级的已知转移系数,可以估算物种的营养级( Minagawa&Wada(1984)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号