...
首页> 外文期刊>Information and computation >Optimal proof systems imply complete sets for promise classes
【24h】

Optimal proof systems imply complete sets for promise classes

机译:最优证明系统暗含承诺类的完整集合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A polynomial time computable function h : Sigma* --> Sigma* whose range is a set L is called a proof system for L. In this setting, an h-proof for x is an element of L is just a string omega with h(omega) = x. Cook and Reckhow defined this concept in [13], and in order to compare the relative strength of different proof systems for the set TAUT of tautologies in propositional logic, they considered the notion of p-simulation. Intuitively, a proof system h' p-simulates h if any h-proof w can be translated in polynomial time into an h'-proof omega' for h(omega). We also consider the related notion of simulation between proof systems where it is only required that for any h-proof w there exists an h'-proof w' whose size is polynomially bounded in the size of omega. A proof system is called (p-)optimal for a set L if it (p-)simulates every other proof system for L. The question whether p-optimal or optimal proof systems for TAUT exist is an important one in the field. In this paper we show a close connection between the existence of (p-)optimal proof systems and the existence of complete problems for certain promise complexity classes like UP, NP boolean AND Sparse, RP or BPP. For this we introduce the notion of a test set for a promise class C and prove that C has a many-one complete set if and only if C has a test set T with a p-optimal proof system. If in addition the machines defining a promise class have a certain ability to guess proofs, then the existence of a p-optimal proof system for T can be replaced by the presumably weaker assumption that T has an optimal proof system. Strengthening a result from Krajicek and Pudlak [20], we also give sufficient conditions for the existence of optimal and p-optimal proof systems. (C) 2003 Elsevier Science (USA). All rights reserved. [References: 28]
机译:多项式时间可计算函数h:Sigma *-> Sigma *,其范围为集合L,称为L的证明系统。在这种设置下,x的h证明是L的元素,只是一个字符串h (Ω)= x。 Cook和Reckhow在[13]中定义了这个概念,并且为了比较命题逻辑中重言式集合TAUT的不同证明系统的相对强度,他们考虑了p模拟的概念。直观地,如果可以在多项式时间内将任何h证明w转换为h(omega)的h'证明omega',则证明系统h'p模拟h。我们还考虑了证明系统之间的模拟相关概念,其中仅要求对于任何h证明w都存在一个h'证明w',其大小在Ω的范围内是多项式的。如果集合L对每个L的其他证明系统都进行(p-)模拟,则证明系统称为集合L的(p-)最优系统。存在TAUT的p-最优或最优证明系统这一问题在该领域中很重要。在本文中,我们显示了(p-)最优证明系统的存在与某些承诺复杂度类(如UP,NP布尔和稀疏,RP或BPP)的完全问题之间的紧密联系。为此,我们引入了针对承诺类C的测试集的概念,并证明且仅当C具有带有p最优证明系统的测试集T时,C才具有多完整集。此外,如果定义承诺类的机器具有一定的猜测证明能力,则可以用T具有最佳证明系统的较弱假设来代替T的p最优证明系统的存在。为了加强Krajicek和Pudlak [20]的结果,我们还为存在最优和p最优证明系统提供了充分的条件。 (C)2003 Elsevier Science(美国)。版权所有。 [参考:28]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号