首页> 外文期刊>電子情報通信学会技術研究報告 >Electric Field Induced in Retina and Brain at Threshold Magnetic Flux Density Causing Magnetophosphenes
【24h】

Electric Field Induced in Retina and Brain at Threshold Magnetic Flux Density Causing Magnetophosphenes

机译:在阈值磁通密度下,引起磁磷的视网膜和大脑中感应的电场

获取原文
获取原文并翻译 | 示例
       

摘要

In the international safety guidelines/standards, the rationale for human protection from extremely-low-frequency magnetic field exposure is to prevent the magneto-stimulation. The threshold in-situ electric field for magnetophosphenes has been experimentally derived as 8.14 mT at 20 Hz. However, the corresponding in-situ electric field in the central nervous system has not been well investigated. The present study derived computationally in-situ electric field in the brain and retina in different anatomically-based numeric human models exposed to uniform magnetic fields at extremely low frequencies. A quasi-static finite-difference time-domain method was applied to analyze this problem. First, the computational uncertainty caused by using a stair-casing model is investigated by comparing the electric field induced in a three-layer sphere obtained by the computational method to an analytical solution. In addition, the electric fields induced in anatomically-based models with different resolutions are also compared. For our computational results, the 99th percentile value of the in-situ electric field is found to be reasonable both for the sphere and anatomically-based models with different resolutions. Then, the 99th percentile values of the electric field in the brain and retina in different models are computed for exposure at the threshold magnetic flux density for magnetophosphenes. When comparing the 99th percentile value in the brain of the anatomically-based model with those derived from an ellipsoid defined in the IEEE standard, the former was 10-70% larger than the latter. The main reason for this difference is attributed to the remaining part of the body in addition to the model inhomogeneity.
机译:在国际安全准则/标准中,保护人体免受极低频磁场影响的理由是要防止磁刺激。磁derived的阈值原位电场已通过实验推导为20 Hz时的8.14 mT。但是,尚未很好地研究中枢神经系统中相应的原位电场。本研究以不同的基于解剖学的数字人体模型在极低频率下暴露于均匀磁场的情况下,通过计算得出了大脑和视网膜的原位电场。应用准静态时域有限差分法分析了该问题。首先,通过将在计算方法获得的三层球体中感应的电场与解析解进行比较,研究了由楼梯壳体模型引起的计算不确定性。此外,还比较了具有不同分辨率的基于解剖模型的感应电场。对于我们的计算结果,发现原位电场的第99个百分数值对于具有不同分辨率的球体模型和基于解剖的模型都是合理的。然后,计算出在不同模型中大脑和视网膜中电场的第99个百分位值,以针对磁phosph的阈值磁通密度进行曝光。将基于解剖模型的模型的大脑中第99个百分位数值与IEEE标准中定义的椭球派生的值进行比较时,前者比后者大10-70%。造成这种差异的主要原因除了模型不均匀之外,还归因于身体的其余部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号