【24h】

Turbulent Micropolar SPH Fluids with Foam

机译:带泡沫的湍流微极性SPH流体

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper we introduce a novel micropolar material model for the simulation of turbulent inviscid fluids. The governing equations are solved by using the concept of Smoothed Particle Hydrodynamics (SPH). As already investigated in previous works, SPH fluid simulations suffer from numerical diffusion which leads to a lower vorticity, a loss in turbulent details and finally in less realistic results. To solve this problem we propose a micropolar fluid model. The micropolar fluid model is a generalization of the classical Navier-Stokes equations, which are typically used in computer graphics to simulate fluids. In contrast to the classical Navier-Stokes model, micropolar fluids have a microstructure and therefore consider the rotational motion of fluid particles. In addition to the linear velocity field these fluids also have a field of microrotation which represents existing vortices and provides a source for new ones. However, classical micropolar materials are viscous and the translational and the rotational motion are coupled in a dissipative way. Since our goal is to simulate turbulent fluids, we introduce a novel modified micropolar material for inviscid fluids with a non-dissipative coupling. Our model can generate realistic turbulences, is linear and angular momentum conserving, can be easily integrated in existing SPH simulation methods and its computational overhead is negligible. Another important visual feature of turbulent liquids is foam. Therefore, we present a post-processing method which considers microrotation in the foam particle generation. It works completely automatic and requires only one user-defined parameter to control the amount of foam.
机译:在本文中,我们介绍了一种新颖的微极性材料模型,用于模拟湍流的粘性流体。通过使用“平滑粒子流体动力学”(SPH)的概念来求解控制方程。正如先前工作中已经研究过的那样,SPH流体模拟存在数值扩散的问题,这会导致较低的涡度,湍流细节的损失,并最终导致不太现实的结果。为了解决这个问题,我们提出了一种微极性流体模型。微极性流体模型是经典Navier-Stokes方程的推广,通常在计算机图形学中用于模拟流体。与经典的Navier-Stokes模型相比,微极性流体具有微观结构,因此考虑了流体粒子的旋转运动。除了线速度场外,这些流体还具有微旋转场,该场代表了现有的涡旋并为新的涡旋提供了动力。然而,经典的微极性材料是粘性的,并且平移运动和旋转运动以耗散方式耦合。由于我们的目标是模拟湍流流体,因此我们引入了一种具有非耗散耦合的新型改性微极性材料,用于粘性流体。我们的模型可以生成逼真的湍流,保持线性和角动量,可以轻松地集成到现有的SPH仿真方法中,其计算开销可以忽略不计。湍流液体的另一个重要的视觉特征是泡沫。因此,我们提出一种后处理方法,该方法考虑了泡沫颗粒生成中的微旋转。它完全自动运行,仅需一个用户定义的参数即可控制泡沫量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号