首页> 外文期刊>IEEE Transactions on Vehicular Technology >Optimal Measurement Policy for Linear Measurement Systems With Applications to UAV Network Topology Prediction
【24h】

Optimal Measurement Policy for Linear Measurement Systems With Applications to UAV Network Topology Prediction

机译:线性测量系统的最优测量策略及其在无人机网络拓扑预测中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic network topology can pose important challenges to communication and control protocols in networks of autonomous vehicles. For instance, maintaining connectivity is a key challenge in unmanned aerial vehicle (UAV) networks. However, tracking and computational resources of the observer module might not be sufficient for constant monitoring of all surrounding nodes in large-scale networks. In this article, we propose an optimal measurement policy for network topology monitoring under constrained resources. To this end, We formulate the localization of multiple objects in terms of linear networked systems and solve it using Kalman filtering with intermittent observation. The proposed policy includes two sequential steps. We first find optimal measurement attempt probabilities for each target using numerical optimization methods to assign the limited number of resources among targets. The optimal resource allocation follows a waterfall-like solution to assign more resources to targets with lower measurement success probability. This provides a $ext{10}%$ to $ext{60}%$ gain in prediction accuracy. The second step is finding optimal on-off patterns for measurement attempts for each target over time. We show that a regular measurement pattern that evenly distributed resources over time outperforms the two extreme cases of using all measurement resources either in the beginning or at the end of the measurement cycle. Our proof is based on characterizing the fixed-point solution of the error covariance matrix for regular patterns. Extensive simulation results confirm the optimality of the most alternating pattern with up to 10-fold prediction improvement for different scenarios. These two guidelines define a general policy for target tracking under constrained resources with applications to network topology prediction of autonomous systems.
机译:动态网络拓扑结构可能会对自动驾驶汽车网络中的通信和控制协议提出重大挑战。例如,保持连接性是无人机(UAV)网络中的关键挑战。但是,观察者模块的跟踪和计算资源可能不足以持续监视大规模网络中的所有周围节点。在本文中,我们提出了一种在资源受限的情况下用于网络拓扑监视的最佳测量策略。为此,我们根据线性网络系统来公式化多个对象的定位,并使用带有间歇观测的卡尔曼滤波来解决。拟议的政策包括两个连续步骤。我们首先使用数值优化方法为每个目标分配有限数量的资源,从而找到每个目标的最佳测量尝试概率。最佳资源分配遵循类似瀑布的解决方案,以较低的测量成功概率将更多资源分配给目标。这样可以将$ text {10} %$提高到$ text {60} %$的预测准确性。第二步是找到随时间推移对每个目标进行测量尝试的最佳开关模式。我们显示出,随着时间的推移均匀分配资源的常规测量模式优于在测量周期开始或结束时使用所有测量资源的两种极端情况。我们的证明是基于对规则模式的误差协方差矩阵的定点解进行表征的。大量的仿真结果确认了最交替模式的最优性,针对不同情况的预测提高了10倍。这两个准则定义了用于在资源受限的情况下进行目标跟踪的一般策略,并将其应用于自治系统的网络拓扑预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号