首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Displacement Imaging During Focused Ultrasound Median Nerve Modulation: A Preliminary Study in Human Pain Sensation Mitigation
【24h】

Displacement Imaging During Focused Ultrasound Median Nerve Modulation: A Preliminary Study in Human Pain Sensation Mitigation

机译:聚焦超声中位神经调节期间的位移成像:人类疼痛感测减轻的初步研究

获取原文
获取原文并翻译 | 示例
       

摘要

Focused ultrasound (FUS)-based viscoelastic imaging techniques using high frame rate (HFR) ultrasound to track tissue displacement can be used for mechanistic monitoring of FUS neuromodulation. However, a majority of techniques avoid imaging during the active push transmit (interleaved or postpush acquisitions) to mitigate ultrasound interference, which leads to missing temporal information of ultrasound effects when FUS is being applied. Furthermore, critical for clinical translation, use of both axial steering and real-time (<1 s) capabilities for optimizing acoustic parameters for tissue engagement are largely missing. In this study, we describe a method of noninterleaved, single Vantage imaging displacement within an active FUS push with simultaneous axial steering and real-time capabilities using a single ultrasound acquisition machine. Results show that the pulse sequence can track micron-sized displacements using frame rates determined by the calculated time-of-flight (TOF), without interleaving the FUS pulses and imaging acquisition. Decimation by 3-7 frames increases signal-to-noise ratio (SNR) by 15.09 +/- 7.03 dB. Benchmarking tests of CUDA-optimized code show increase in processing speed of 35- and 300-fold in comparison with MATLAB parallel processing GPU and CPU functions, respectively, and we can estimate displacement from steered push beams +/- 10 mm from the geometric focus. Preliminary validation of displacement imaging in humans shows that the same driving pressures led to variable nerve engagement, demonstrating important feedback to improve transducer coupling, FUS incident angle, and targeting. Regarding the use of our technique for neuromodulation, we found that FUS altered thermal perception of thermal pain by 0.9643 units of pain ratings in a single trial. Additionally, 5 mu m of nerve displacement was shown in on-target versus off-target sonications. The initial feasibility in healthy volunteers warrants further study for potential clinical translation of FUS for pain suppression.
机译:基于高帧速率(HFR)超声波以跟踪组织位移的聚焦超声(FUS)可用于组织位移可用于Fus神经调节的机械监测。然而,大多数技术避免了在主动推送(交织或后填充的采集)期间成像以减轻超声干扰,这导致在施加FUS时缺少超声效应的时间信息。此外,对于临床翻译至关重要,用于优化用于组织接合的声学参数的轴向转向和实时(<1 s)能力在很大程度上缺失。在该研究中,我们描述了一种非交织的单个Vantage成像位移的方法,其在有源FUS推动中,使用单个超声采集机器同时轴向转向和实时能力。结果表明,脉冲序列可以使用由计算出的飞行时间(TOF)确定的帧速率跟踪微米尺寸的位移,而无需交织FUS脉冲和成像采集。向3-7帧的抽取将信噪比(SNR)增加15.09 +/- 7.03 dB。 CUDA优化的代码的基准测试显示,与MATLAB并行处理GPU和CPU功能分别相比,加工速度的加工速度增加35-300倍,我们可以估计来自几何焦点的转向推动梁+/- 10 mm的位移。人类位移成像的初步验证表明,相同的驱动压力导致可变神经接合,展示了改善换能器耦合,熔态入射角和靶向的重要反馈。关于我们的神经调节技术的使用,我们发现Fus在一次试验中通过0.9643疼痛评级进行热疼痛的热感染。另外,在目标与偏离目标超声中显示5μm神经位移。健康志愿者的初始可行性需要进一步研究疼痛抑制的潜在临床翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号