首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Single-Shot Near-Field Volumetric Imaging System for Optical Ultrasound and Photoacoustics Using Capacitive Micromachined Ultrasonic Transducer Without Transmission Mode
【24h】

Single-Shot Near-Field Volumetric Imaging System for Optical Ultrasound and Photoacoustics Using Capacitive Micromachined Ultrasonic Transducer Without Transmission Mode

机译:用于光学超声波和光声的单次近场体积成像系统,使用电容微机械超声波换能器而无需传输模式

获取原文
获取原文并翻译 | 示例
       

摘要

In this article, we present a single-shot dual-mode imaging system that uses optical ultrasound (US) as an ultrasonic pulser without a transmission circuit. The ultrasonic pulse-echo system comprises an optical US pulser generated by carbon nanotubes (CNTs), which generate a high-power photoacoustic (PA) signal and a capacitive micromachined ultrasonic transducer (CMUT) receiver. By fabricating a thin CNT-polydimethylsiloxane (PDMS) composite capable of semiabsorption of the laser, a single-shot imaging system was developed. By transmitting a semipenetration light to the object, US and PA imaging were performed in a single shot. A CNT thickness of <1 mu m produced a maximum pressure of 154 kPa, and US was received by CMUT with a 2-MHz center frequency in PDMS. Additionally, a low-profile and near-depth imaging system was constructed with an intermediate layer of the 6-mm PDMS for the dry contact method. We performed a single-shotdual-mode imaging experimenton point and line phantoms, as well as the particle spread in the soft tissue. Thus, we examined the feasibility of the near-depth and single-shot dual-mode (US and PA) imaging system capable of a dry contact.
机译:在本文中,我们提供了一个单次双模成像系统,其使用光学超声(US)作为无传输电路的超声波脉冲。超声波脉冲回波系统包括由碳纳米管(CNT)产生的光学US脉冲,其产生高功率光声(PA)信号和电容式微机械超声换能器(CMUT)接收器。通过制造能够半吸收激光的半吸收的薄的CNT-聚二甲基硅氧烷(PDMS)复合材料,开发了单次成像系统。通过向对象传输半齿光,我们和PA成像在单一拍摄中进行。 <1μm的CNT厚度为154kPa的最大压力,并且通过CMUT在PDMS中以2MHz中心频率接收。另外,用6mm PDMS的中间层构建低型和近摄成像系统,用于干接触方法。我们进行了单次拍摄模式成像实验点和线映像,以及软组织中的颗粒。因此,我们检查了能够干燥接触的近深度和单次双模(US和PA)成像系统的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号