...
首页> 外文期刊>Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on >Fast ultrasound beam prediction for linear and regular two-dimensional arrays
【24h】

Fast ultrasound beam prediction for linear and regular two-dimensional arrays

机译:线性和规则二维阵列的快速超声波束预测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Real-time beam predictions are highly desirable for the patient-specific computations required in ultrasound therapy guidance and treatment planning. To address the longstanding issue of the computational burden associated with calculating the acoustic field in large volumes, we use graphics processing unit (GPU) computing to accelerate the computation of monochromatic pressure fields for therapeutic ultrasound arrays. In our strategy, we start with acceleration of field computations for single rectangular pistons, and then we explore fast calculations for arrays of rectangular pistons. For single-piston calculations, we employ the fast near-field method (FNM) to accurately and efficiently estimate the complex near-field wave patterns for rectangular pistons in homogeneous media. The FNM is compared with the Rayleigh-Sommerfeld method (RSM) for the number of abscissas required in the respective numerical integrations to achieve 1%, 0.1%, and 0.01% accuracy in the field calculations. Next, algorithms are described for accelerated computation of beam patterns for two different ultrasound transducer arrays: regular 1-D linear arrays and regular 2-D linear arrays. For the array types considered, the algorithm is split into two parts: 1) the computation of the field from one piston, and 2) the computation of a piston-array beam pattern based on a pre-computed field from one piston. It is shown that the process of calculating an array beam pattern is equivalent to the convolution of the single-piston field with the complex weights associated with an array of pistons. Our results show that the algorithms for computing monochromatic fields from linear and regularly spaced arrays can benefit greatly from GPU computing hardware, exceeding the performance of an expensive CPU by more than 100 times using an inexpensive GPU board. For a single rectangular piston, the FNM method facilitates volumetric computations with 0.01% accuracy at rates better than 30 ns per field point. Fu-n-nrthermore, we demonstrate array calculation speeds of up to 11.5 X 109 field-points per piston per second (0.087 ns per field point per piston) for a 512-piston linear array. Beam volumes containing 2563 field points are calculated within 1 s for 1-D and 2-D arrays containing 512 and 202 pistons, respectively, thus facilitating future real-time thermal dose predictions.
机译:对于超声治疗指导和治疗计划中所需的针对特定患者的计算,实时束流预测非常理想。为了解决与计算大量声场相关的计算负担的长期问题,我们使用图形处理单元(GPU)计算来加速用于治疗性超声阵列的单色压力场的计算。在我们的策略中,我们从加速单个矩形活塞的场计算开始,然后探索矩形活塞阵列的快速计算。对于单活塞计算,我们采用快速近场方法(FNM)来准确高效地估计均质介质中矩形活塞的复杂近场波型。将FNM与Rayleigh-Sommerfeld方法(RSM)进行比较,以求得各个数值积分所需的横坐标数,以在现场计算中达到1%,0.1%和0.01%的精度。接下来,描述用于加速计算两个不同超声换能器阵列:规则的1维线性阵列和规则的2维线性阵列的波束方向图的算法。对于所考虑的阵列类型,该算法分为两部分:1)计算来自一个活塞的磁场,以及2)基于来自一个活塞的预计算场的活塞阵列波束方向图的计算。结果表明,计算阵列波束方向图的过程等效于单活塞场的卷积,其中复权重与活塞阵列相关。我们的结果表明,用于从线性和规则间隔的阵列中计算单色场的算法可以从GPU计算硬件中受益匪浅,而使用便宜的GPU板将昂贵的CPU的性能提高100倍以上。对于单个矩形活塞,FNM方法有助于以0.01%的精度进行体积计算,且每个场点的速率优于30 ns。此外,对于512活塞线性阵列,我们展示了高达11.5 X每个活塞每秒109个场点(每个活塞每个场点0.087 ns)的阵列计算速度。对于分别包含512个活塞和202个活塞的1-D和2-D阵列,将在1 s内计算出包含2563个场点的束体积,从而便于将来进行实时热剂量预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号