首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves
【24h】

Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves

机译:高分辨率SVD稀疏提取超声导波频散曲线。

获取原文
获取原文并翻译 | 示例
           

摘要

The 2-D Fourier transform analysis of multichannel signals is a straightforward method to extract the dispersion curves of guided modes. Basically, the time signals recorded at several positions along the waveguide are converted to the wavenumber-frequency space, so that the dispersion curves (i.e., the frequency-dependent wavenumbers) of the guided modes can be extracted by detecting peaks of energy trajectories. In order to improve the dispersion curve extraction of low-amplitude modes propagating in a cortical bone, a multiemitter and multireceiver transducer array has been developed together with an effective singular vector decomposition (SVD)-based signal processing method. However, in practice, the limited number of positions where these signals are recorded results in a much lower resolution in the wavenumber axis than in the frequency axis. This prevents a clear identification of overlapping dispersion curves. In this paper, a sparse SVD (S-SVD) method, which combines the signal-to-noise ratio improvement of the SVD-based approach with the high wavenumber resolution advantage of the sparse optimization, is presented to overcome the above-mentioned limitation. Different penalty constraints, i.e., l1 -norm, Frobenius norm, and revised Cauchy norm, are compared with the sparse characteristics. The regularization parameters are investigated with respect to the convergence property and wavenumber resolution. The proposed S-SVD method is investigated using synthetic wideband signals and experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. The analysis of the results suggests that the S-SVD method has the potential to significantly enhance the wavenumber resolution and to improve the extraction of the dispersion curves.
机译:多通道信号的二维傅立叶变换分析是提​​取引导模式色散曲线的直接方法。基本上,将沿波导的几个位置处记录的时间信号转换为波数-频率空间,从而可以通过检测能量轨迹的峰值来提取引导模式的色散曲线(即,与频率有关的波数)。为了改善在皮质骨中传播的低振幅模式的色散曲线提取,已经开发了多发射器和多接收器换能器阵列以及基于有效奇异矢量分解(SVD)的信号处理方法。但是,实际上,记录这些信号的位置数量有限,导致波数轴的分辨率远低于频率轴的分辨率。这样就无法清楚地识别出重叠的色散曲线。本文提出了一种稀疏SVD(S-SVD)方法,该方法将基于SVD的方法的信噪比改进与稀疏优化的高波数分辨率优势相结合,从而克服了上述限制。将不同的惩罚约束,即l1-范数,Frobenius范数和修正的柯西范数与稀疏特征进行比较。针对收敛性和波数分辨率研究了正则化参数。拟议的S-SVD方法是使用合成宽带信号以及从模仿骨骼的人体模型和离体人类半径获得的实验数据进行研究的。结果分析表明,S-SVD方法具有显着提高波数分辨率和改善色散曲线提取的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号