首页> 外文期刊>IEEE Transactions on Signal Processing >Efficient Global Optimal Resource Allocation in Non-Orthogonal Interference Networks
【24h】

Efficient Global Optimal Resource Allocation in Non-Orthogonal Interference Networks

机译:非正交干扰网络中的高效全局最优资源分配

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many resource allocation tasks are challenging global (i.e., non-convex) optimization problems. The main issue is that the computational complexity of these problems grows exponentially in the number of variables instead of polynomially as formany convex optimization problems. However, often the non-convexity stems only from a subset of variables. Conventional global optimization frameworks likemonotonic optimization orDCprogramming treat all variables as global variables and require complicated, problem specific decomposition approaches to exploit the convexity in some variables. To overcome this challenge, we develop an easy-to-use algorithm that inherently differentiates between convex and non-convex variables, preserving the low computational complexity in the number of convex variables. Another issue with these widely used frameworks is that they may suffer from severe numerical problems. We discuss this issue in detail and provide a clear motivating example. The solution to this problem is to replace the traditional approach of finding an epsilon-approximate solution by the novel concept of epsilon-essential feasibility. The underlying algorithmic approach is called successive incumbent transcending (SIT) algorithm and builds the foundation of our developed algorithm. A further highlight of this algorithm is that it inherently treats fractional objectives making the use of Dinkelbach's iterative algorithm obsolete. Numerical experiments show a speed-up of four orders of magnitude over state-of-the-art algorithms and almost three orders of magnitude of additional speed-up over Dinkelbach's algorithm for fractional programs.
机译:许多资源分配任务正在挑战全局(即非凸)优化问题。主要问题是这些问题的计算复杂度随变量数量呈指数增长,而不是像任何凸优化问题一样呈多项式增长。但是,非凸性通常仅源自变量的子集。常规的全局优化框架(如单调优化或DC编程)将所有变量视为全局变量,并且需要复杂的,特定于问题的分解方法来利用某些变量的凸性。为了克服这一挑战,我们开发了一种易于使用的算法,可以固有地区分凸变量和非凸变量,从而保持了凸变量数量的低计算复杂性。这些广泛使用的框架的另一个问题是它们可能遭受严重的数值问题。我们将详细讨论此问题,并提供一个明确的激励示例。该问题的解决方案是用新的ε必要可行性概念代替寻找ε近似解决方案的传统方法。基本的算法方法称为连续现任超越(SIT)算法,并为我们开发的算法奠定了基础。该算法的另一个亮点是,它固有地对待小数目标,这使得Dinkelbach迭代算法的使用已过时。数值实验显示,与最新算法相比,分数程序的速度提高了四个数量级,与Dinkelbach算法相比,附加速度提高了近三个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号