首页> 外文期刊>IEEE Transactions on Power Electronics >Multiloop Minimum Switching Cycle Control Based on Nonaveraged Current Discrete-Time Model for Buck Converter
【24h】

Multiloop Minimum Switching Cycle Control Based on Nonaveraged Current Discrete-Time Model for Buck Converter

机译:基于非平均电流离散时间模型的Buck转换器多环最小开关周期控制

获取原文
获取原文并翻译 | 示例
       

摘要

Exploring high-performance controller for buck converter is challenging since it can be easily affected by converter model accuracy. In this paper, a novel nonaveraged current discrete-time (NCD) model is proposed, in which inductor current is expressed as time-varying equations during switch-on and switch-off states. It achieves higher accuracy than the conventional averaged model at high-frequency range, thus can be used to optimize high-speed controller design. Based on the NCD model, a multiloop minimum switching cycle (MMSC) control strategy, composed of output feedback (OF), line feed forward (LFF), and reference feed forward (RFF) loops, is proposed and tuned for buck converter operating in continuous conduction mode. Mutual influences among three loops are considered and eliminated by specifically designed LFF and RFF compensations, which adapt the OF compensation. With consideration of sampling and calculation delays, relationship between transient switching cycles and geometric center of controller poles is discovered from a calculated output voltage error series. Furthermore, theoretical minimum switching cycles are calculated by moving the center inside the unit cycle of complex plane, which ensures system stability. Moreover, load/line transient response and reference tracking time are simultaneously optimized to the minimum switching cycles. Effectiveness of the controller is proved by converter closed-loop pole/zero plots, transient response simulations, and experiments.
机译:探索降压转换器的高性能控制器具有挑战性,因为它很容易受到转换器模型精度的影响。本文提出了一种新颖的非平均电流离散时间(NCD)模型,其中电感器电流表示为在接通和断开状态期间的时变方程。与传统的平均模型相比,它在高频范围内具有更高的精度,因此可用于优化高速控制器设计。基于NCD模型,提出了一种多回路最小开关周期(MMSC)控制策略,该策略由输出反馈(OF),线路前馈(LFF)和参考前馈(RFF)回路组成,并针对在以下条件下工作的降压转换器进行了调整。连续传导模式。通过专门设计的LFF和RFF补偿考虑并消除了三个回路之间的相互影响,这些补偿采用OF补偿。考虑到采样和计算延迟,从计算出的输出电压误差序列中发现了瞬态开关周期与控制器极点几何中心之间的关系。此外,通过在复杂平面的单位周期内移动中心可计算出理论上的最小开关周期,从而确保了系统的稳定性。此外,负载/线路瞬态响应和参考跟踪时间会同时优化到最小开关周期。转换器的闭环极点/零点图,瞬态响应仿真和实验证明了该控制器的有效性。

著录项

  • 来源
    《IEEE Transactions on Power Electronics》 |2017年第4期|3143-3153|共11页
  • 作者单位

    School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China;

    IMRA Europe, Brighton, U.K;

    School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China;

    School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China;

    School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China;

    School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Switches; Mathematical model; Transfer functions; Inductors; Transient response; Voltage control; Load modeling;

    机译:开关;数学模型;传递函数;电感器;瞬态响应;电压控制;负载建模;
  • 入库时间 2022-08-17 13:22:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号