...
首页> 外文期刊>Nanotechnology, IEEE Transactions on >Power Profile Obfuscation Using Nanoscale Memristive Devices to Counter DPA Attacks
【24h】

Power Profile Obfuscation Using Nanoscale Memristive Devices to Counter DPA Attacks

机译:使用纳米级忆阻设备对DPA攻击进行功率分布混淆

获取原文
获取原文并翻译 | 示例
           

摘要

Side channel attacks (SCAs), such as differential power analysis (DPA), are considered as one of the most competent attacks to obtain the secure key of a cryptographic algorithm. Conventional countermeasures for DPAs are focused on hiding and masking techniques at different levels of design abstraction, associated with high power or area cost. However, emerging technologies such as resistive random access memory (RRAM), offer unique opportunities to mitigate SCAs/DPAs with their inherent device characteristics such as variability in write time, ultra low power (0.1–3 pJ/bit), and high density (). In this research, DPA attacks are mitigated by obfuscating the power profile using inverse RRAM modules. The state memory transaction power traces are balanced when the inverse memory is accessed in tandem with the memory module based on a peripheral balancing logic block. A baseline RTL architecture for the 128-bit AES cryptoprocessor is designed and implemented in CMOS technology. Balancing using RRAM and CMOS memory modules is compared against this baseline architecture. A customized simulation framework is developed for extracting the power traces using Synopsys and Cadence tool suites along with a Hamming weight DPA attack module implemented in Python. The attack mounted on the baseline architectures was successful and the full key was recovered. However, DPA attacks mounted on the inverse CMOS and RRAM-based AES cryptoprocessor yielded unsuccessful results with no keys recovered, demonstrating the resiliency of the proposed architecture against DPA attacks. More importantly, the power consumed with the RRAM balancing logic block is one order lower than the corresponding pure CMOS implementation.
机译:诸如差分功率分析(DPA)之类的边信道攻击(SCA)被认为是获取密码算法安全密钥的最有效的攻击之一。 DPA的常规对策集中在设计抽象水平不同的隐藏和掩蔽技术上,这与高功率或面积成本相关。但是,诸如电阻式随机存取存储器(RRAM)之类的新兴技术凭借其固有的器件特性(如写入时间的可变性,超低功耗(0.1-3 pJ / bit)和高密度)为缓解SCA / DPA提供了独特的机会。 )。在这项研究中,通过使用反向RRAM模块混淆电源配置文件来缓解DPA攻击。当基于外围平衡逻辑模块与存储模块串联访问反向存储器时,状态存储器事务处理功率迹线将达到平衡。 128位AES密码处理器的基准RTL体系结构是用CMOS技术设计和实现的。将使用RRAM和CMOS内存模块的平衡与该基准架构进行了比较。开发了定制的仿真框架,以使用Synopsys和Cadence工具套件以及以Python实现的Hamming weight DPA攻击模块来提取功率跟踪。基线架构上发起的攻击成功,并且完整密钥已恢复。但是,安装在基于CMOS和RRAM的反向AES密码处理器上的DPA攻击未获得成功的密钥,但未获得成功的结果,证明了所提出的体系结构可抵抗DPA攻击。更重要的是,RRAM平衡逻辑块所消耗的功率比相应的纯CMOS实施低一阶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号