首页> 外文期刊>IEEE Transactions on Microwave Theory and Techniques >Wave Equation-Based Implicit Subdomain DGTD Method for Modeling of Electrically Small Problems
【24h】

Wave Equation-Based Implicit Subdomain DGTD Method for Modeling of Electrically Small Problems

机译:基于波动方程的隐式子域DGTD方法用于电小问题建模

获取原文
获取原文并翻译 | 示例
           

摘要

A second-order wave equation-based implicit discontinuous Galerkin time-domain (DGTD) method is proposed to efficiently model electrically small problems. The proposed method employs the second-order wave equation for electric field (or magnetic field) as the governing equation of the DG formulation, instead of the first-order Maxwell’s curl equations. A modified version of the Riemann solver (upwind flux) is introduced to evaluate the numerical flux resulting from the weak form of the wave equation. Compared with previous first-order Maxwell’s curl equation-based implicit DGTD methods, which typically solve all electric and magnetic field unknowns for each subdomain, the proposed method only needs to solve for the electric field unknowns plus the surface magnetic field unknowns at subdomain interfaces. This reduces the dimensions of the resultant linear system and thus allows for modeling larger problems. Furthermore, unlike element-based DGTD methods, the proposed method is subdomain-based. The computational region is divided into multiple subdomains based on the domain-decomposition method, and each subdomain may contain multiple elements. Different element types and orders of basis functions can be employed in different subdomains to exploit the geometry property of the model. A nonconformal mesh is allowed between different subdomains to increase meshing flexibility. The Newmark-beta time-integration scheme is used for implicit temporal discretization, and fast direct linear solvers, such as the lower-diagonal-upper decomposition algorithm, are employed to accelerate time integration when all the subdomains are in a sequential order. Numerical results show that the proposed method is more efficient in terms of CPU time, and also saves memory with respect to the previous implicit DGTD method when modeling electrically small problems.
机译:提出了一种基于二阶波动方程的隐式不连续Galerkin时域(DGTD)方法,可以对电小问题进行有效建模。拟议的方法采用电场(或磁场)的二阶波动方程作为DG公式的控制方程,而不是一阶麦克斯韦的卷曲方程。引入了修改版的黎曼求解器(迎风通量)来评估由波动方程的弱形式产生的数值通量。与以前的基于麦克斯韦一阶基于卷曲方程的隐式DGTD方法相比,该方法通常可以解决每个子域的所有电场和磁场未知数,而该方法只需要解决子域界面处的电场未知数和表面磁场未知数。这减小了所得线性系统的尺寸,因此可以对较大的问题进行建模。此外,与基于元素的DGTD方法不同,该方法是基于子域的。基于域分解方法,将计算区域划分为多个子域,并且每个子域可以包含多个元素。可以在不同的子域中使用不同的元素类型和基函数的顺序来利用模型的几何属性。在不同子域之间允许使用非共形网格,以增加网格灵活性。 Newmark-beta时间积分方案用于隐式时间离散化,并且当所有子域都按顺序排列时,采用快速直接线性求解器(例如下对角上分解算法)来加速时间积分。数值结果表明,在对电气小问题进行建模时,相对于以前的隐式DGTD方法,该方法在CPU时间方面更为有效,并且还节省了内存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号