首页> 外文期刊>Magnetics, IEEE Transactions on >Magnetic Head Protrusion Profiles and Wear Pattern of Thermal Flying-Height Control Sliders With Different Heater Designs
【24h】

Magnetic Head Protrusion Profiles and Wear Pattern of Thermal Flying-Height Control Sliders With Different Heater Designs

机译:不同加热器设计的热飞高控制滑块的磁头突出轮廓和磨损方式

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Hard drives featuring sliders with thermal flying-height control (TFC) using thermal expansion of a heating element have been widely used in products for achieving lower magnetic spacing. This approach allows to actively compensate for static FH variations and achieves sub-1-nm clearance during read/write operation. However, the soft-error rate (SER) may not be minimized with an arbitrary heating element due to the nonuniform protrusion profile and the several micrometers of physical separation between reader and writer. Most published work mainly focused on actuation efficiency or reader spacing without detailed study of the relationship between balance of read/write spacing and the location of heating element. This paper uses an established numerical approach with head structure and pole-tip recession profile measured by scanning electron microscope and atomic force microscope to calculate the 3-D protrusion profiles, and to predict the head wear pattern created in TFC stress test, in which an excessive heating power is applied to the heating element so that part of the head is in contact with the spinning disk for a period of time. We also present novel experimental method for measuring wear pattern with angstrom-level resolution by Elastic Peak Maps. TFC sliders with three different heater elements are investigated numerically and experimentally. The numerical results compare well with the measurements in relative wear depths among various layers, and both show that the location and design of heating element have significant effect on the resulting FH profile as well as read and write magnetic spacings. As a result, one can reduce the SER by tailoring the heater design with the considerations of the magnetic requirement and reliability concerns.
机译:具有加热元件热膨胀的热浮动高度控制(TFC)滑块的硬盘驱动器已广泛用于产品中以实现较小的磁间距。这种方法可以主动补偿静态FH变化,并在读/写操作过程中达到1 nm以下的间隙。然而,由于不均匀的突出轮廓以及读取器和写入器之间的几微米的物理间隔,使用任意的加热元件可能无法使软错误率(SER)最小化。大多数公开的工作主要集中在致动效率或读取器间距上,而没有详细研究读/写间距与加热元件位置之间的关系。本文采用既定的数值方法,通过扫描电子显微镜和原子力显微镜测量头部结构和极尖凹进轮廓,计算出3D凸起轮廓,并预测在TFC应力测试中产生的头部磨损模式,其中过度的加热功率被施加到加热元件上,以致头部的一部分与旋转盘接触一段时间。我们还提出了一种新的实验方法,用于通过弹性峰图测量具有埃级分辨率的磨损模式。对具有三种不同加热元件的TFC滑块进行了数值和实验研究。数值结果与在各层之间的相对磨损深度的测量结果很好地比较,并且两者都表明,加热元件的位置和设计对所得的FH轮廓以及读取和写入的磁间距有重大影响。结果,可以通过考虑磁性要求和可靠性考虑来定制加热器设计来减小SER。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号