首页> 外文期刊>Magnetics, IEEE Transactions on >Multicore Magnetic Nanoparticles for Magnetic Particle Imaging
【24h】

Multicore Magnetic Nanoparticles for Magnetic Particle Imaging

机译:多核磁性纳米粒子用于磁性粒子成像

获取原文
获取原文并翻译 | 示例
           

摘要

Biocompatible magnetic nanoparticles are interesting tracers for diagnostic imaging techniques, including magnetic resonance imaging and magnetic particle imaging (MPI). Here, we will present our studies of the physical and especially magnetic properties of dextran coated multicore magnetic iron oxide nanoparticles, with promising high MPI signals revealed by magnetic particle spectroscopy (MPS) measurements. The Nanomag-MIP particles with a hydrodynamic diameter of 106 nm show an increase of the MPS amplitude by a factor of about two at the 3rd harmonic, as compared to Resovist. In particular, the signal improves progressively with the order of the harmonic, a prerequisite for better spatial resolution. To understand this behavior, we investigated the samples using quasistatic magnetization measurements yielding bimodal size distributions for both systems, and magnetorelaxometry providing the mean effective anisotropy constant. The mean effective magnetic diameter of the dominant larger size mode is 19 nm with a dispersion parameter of $sigma=0.3$ for Nanomag-MIP, and 22 nm with $sigma=0.25$ for Resovist. However, about 80% of the magnetic nanoparticles of Nanomag-MIP belong to this larger size mode whereas in Resovist only 30% do. The remaining Resovist particles are in the range of 5 nm, and, in practice, do not contribute to the MPI signal.
机译:生物相容性磁性纳米粒子是用于诊断成像技术(包括磁共振成像和磁性粒子成像(MPI))的有趣示踪剂。在这里,我们将介绍我们对葡聚糖包被的多核磁性氧化铁纳米粒子的物理性质,尤其是磁性的研究,并通过磁性粒子光谱(MPS)测量揭示出有希望的高MPI信号。与Resovist相比,流体动力学直径为106 nm的Nanomag-MIP颗粒在三次谐波处的MPS振幅增加了大约两倍。特别是,信号以谐波的顺序逐渐改善,这是获得更好空间分辨率的先决条件。为了理解这种行为,我们使用准静态磁化测量研究了样品,得出了两个系统的双峰尺寸分布,并且磁弹性法提供了平均有效各向异性常数。占主导地位的大尺寸模式的平均有效磁直径为19 nm,色散参数为 $ sigma = 0.3 $ -MIP和22 nm,对于Resovist使用 $ sigma = 0.25 $ 。但是,Nanomag-MIP的磁性纳米粒子约有80%属于这种较大尺寸的模式,而在Resovist中只有30%属于这种模式。剩余的Resovist颗粒在5 nm范围内,实际上对MPI信号无贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号