首页> 外文期刊>IEEE Transactions on Magnetics >Measurement and interpretation of magnetic time effects in recording media
【24h】

Measurement and interpretation of magnetic time effects in recording media

机译:记录介质中磁性时间效应的测量和解释

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic time effects are highly relevant to magnetic information storage because of the large difference (up to 16 or 17 orders of magnitude) between the time scales of the recording process and the required storage stability. Magnetic time effects become more pronounced as the volume of the switching unit becomes smaller, and thus become of more practical importance as the microstructure of recording media is made finer in the pursuit of greater information storage density. Magnetic time effects taking place on time scales longer than about 10/sup -9/ s can be explained by a model of thermally assisted crossing of an energy barrier (Arrhenius-Neel formalism). Many recording phenomena can be explained within this regime. Observation of magnetization changes during exposure to a constant field ("magnetic viscosity") can be interpreted to yield an estimate of the switching volume; in most cases, this volume is larger than the frequently cited "activation volume". The dependence of coercivity on the time scale of the magnetic reversal precess (e.g., on the field sweep rate of a hysteresis loop) can also be used to deduce the volume of the switching unit and to estimate time effects relevant to information storage. A model and procedure for analysis of time-scale dependence of coercivity are described here and applied to typical advanced tape media, of both metal particulate (MP) and metal-evaporated (ME) composition. The resulting switching volume for the MP tape (where the microstructure is well defined) is in approximate agreement with the particle size seen by electron microscopy. The magnetic time effects are significantly stronger in the ME tape than in the MP tape. Measurement of coercivity ion at least two very different time scales (e.g., by vibrating-sample magnetometer and 60-Hz hysteresis loops) provides a convenient means of estimating the effective switching-unit volume, and hence the magnitude of the time effects to be expected in a recording application. The model also allows the estimation of the minimum particle or grain sizes that could be used with adequate stability of magnetic transitions in high-density information storage. The practical lower limit for metal-particle volume is found to be about one-fifth to one-fourth of the volume of current advanced particles.
机译:磁时间效应与磁信息存储高度相关,因为记录过程的时间标度和所需的存储稳定性之间存在较大差异(最多16或17个数量级)。随着开关单元的体积变小,磁性时间效应变得更加明显,并且随着记录介质的微结构在追求更大的信息存储密度方面变得更精细,磁时间效应变得更加重要。时间尺度大于约10 / sup -9 / s的时间所发生的磁时间效应可以通过热辅助越过能垒的模型来解释(Arrhenius-Neel形式主义)。在这种情况下,可以解释许多记录现象。暴露于恒定磁场(“磁粘性”)过程中观察到的磁化强度变化可以解释为得出开关量的估计值。在大多数情况下,该体积大于经常引用的“激活体积”。矫顽力对磁性反转过程的时间标度的依赖关系(例如,对磁滞回线的场扫描速率的依赖)也可以用来推论开关单元的体积并估计与信息存储有关的时间影响。本文介绍了一种用于分析矫顽力与时间尺度相关性的模型和过程,并将其应用于典型的先进带式介质,包括金属微粒(MP)和金属蒸发(ME)成分。 MP磁带的最终转换体积(其中微观结构定义明确)与电子显微镜观察到的粒径大致吻合。 ME磁带中的磁时间效应比MP磁带中的磁时间效应明显更强。至少在两个非常不同的时标上测量矫顽力离子(例如,通过振动样品磁力计和60 Hz磁滞回线)提供了一种方便的方法来估算有效的开关单元体积,从而估算了预期的时间效应量在录音应用程序中。该模型还允许估算在高密度信息存储中具有足够的磁跃迁稳定性时可以使用的最小颗粒或晶粒尺寸。发现金属颗粒体积的实际下限约为当前先进颗粒体积的五分之一至四分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号