首页> 外文期刊>IEEE Transactions on Magnetics >Hybrid Spin-CMOS Polymorphic Logic Gate With Application in In-Memory Computing
【24h】

Hybrid Spin-CMOS Polymorphic Logic Gate With Application in In-Memory Computing

机译:混合自旋CMOS多态逻辑门及其在内存计算中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

In this article, we initially present a hybrid spin-CMOS polymorphic logic gate (HPLG) using a novel 5-terminal magnetic domain wall motion device. The proposed HPLG is able to perform a full set of 1- and 2-input Boolean logic functions (i.e., NOT, AND/NAND, OR/NOR, and XOR/XNOR) by configuring the applied keys. We further show that our proposed HPLG could become a promising hardware security primitive to address IC counterfeiting or reverse engineering by logic locking and polymorphic transformation. The experimental results on a set of ISCAS-89, ITC-99, and Ecole Polytechnique Federale de Lausanne (EPFL) benchmarks show that HPLG obtains up to 51.4% and 10% average performance improvements on the power-delay product (PDP) compared with recent non-volatile logic and CMOS-based designs, respectively. We then leverage this gate to realize a novel processing-in-memory architecture (HPLG-PIM) for highly flexible, efficient, and secure logic computation. Instead of integrating complex logic units in cost-sensitive memory, this architecture exploits a hardware-friendly approach to implement the complex logic functions between multiple operands combining a reconfigurable sense amplifier and an HPLG unit to reduce the latency and the power-hungry data movement further. The device-to-architecture co-simulation results for widely used graph processing tasks running on three social network data sets indicate roughly 3.6x higher energy efficiency and 5.3x speedup over recent resistive RAM (ReRAM) accelerators. In addition, an HPLG-PIM achieves similar to 4x higher energy efficiency and 5.1x speedup over recent processing-in-DRAM acceleration methods.
机译:在本文中,我们首先介绍了使用新型5端磁畴壁运动器件的混合自旋CMOS多态逻辑门(HPLG)。所提出的HPLG能够通过配置所应用的键来执行全套的1输入和2输入布尔逻辑功能(即NOT,AND / NAND,OR / NOR和XOR / XNOR)。我们进一步表明,我们提出的HPLG可以成为有前途的硬件安全原语,以通过逻辑锁定和多态转换解决IC伪造或逆向工程。在一组ISCAS-89,ITC-99和洛桑联邦理工学院(EPFL)基准上的实验结果表明,与功率延迟产品(PDP)相比,HPLG的平均性能提高了51.4%和10%。最近的非易失性逻辑和基于CMOS的设计。然后,我们利用此门来实现新颖的内存处理架构(HPLG-PIM),以实现高度灵活,高效和安全的逻辑计算。该架构不是将复杂的逻辑单元集成到对成本敏感的存储器中,而是采用硬件友好的方法在多个操作数之间实现复杂的逻辑功能,结合了可重配置的读出放大器和HPLG单元,以进一步减少延迟和耗电的数据移动。在三个社交网络数据集上运行的,广泛使用的图形处理任务的设备到体系结构的协同仿真结果表明,与最近的电阻RAM(ReRAM)加速器相比,其能效提高了约3.6倍,速度提高了5.3倍。此外,HPLG-PIM的能效比最新的DRAM内处理加速方法高出4倍,而加速则达到5.1倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号