首页> 外文期刊>Magnetics, IEEE Transactions on >A Performance Comparison of Adaptive Operator-Customized Wavelet Basis and Adaptive -Refinement Methods for 2-D Finite-Element Analysis
【24h】

A Performance Comparison of Adaptive Operator-Customized Wavelet Basis and Adaptive -Refinement Methods for 2-D Finite-Element Analysis

机译:二维有限元分析中自适应算子自定义小波基和自适应精化方法的性能比较

获取原文
获取原文并翻译 | 示例
           

摘要

This paper compares the performance of the popular adaptive -refinement () technique for the finite-element method (FEM) with the adaptive version of the recently presented operator-customized wavelet basis (OCWB). This new method is a combination of the second-generation wavelet theory with hierarchical basis, which is a multi-resolution basis, and, when applied to the FEM, the solution is split into different levels of detail. These levels, also referred to as scales, are composed by compactly supported functions, allowing the detail to be added only on the chosen regions. Although this strategy reduces the total system dimension with sufficiently small error, all the scales are naturally coupled, which means that there are interactions between functions composing different detail levels. This coupling forces the whole multi-resolution system to be recomputed when a detail is added, a kind of redundancy that also occurs on the method. Using the second-generation wavelet theory, functions are custom-designed to decouple the system, which means the interactions between the functions of different levels are eliminated, and it is possible to solve for further detail independently of previous scales. This property significantly increases the performance of the algorithm. Conversely, the formulation—and, consequently, the algorithm design—complexity is also increased, which is the reason why there are such few applications on the subject. Like the method, an adaptive OCWB can be programmed with various strategies; since the results are shown in terms of processing time on a regular PC, both the algorithms have been developed with s- milar structures.
机译:本文将有限元方法(FEM)的流行自适应-优化()技术与最近提出的运营商定制小波基(OCWB)的自适应版本进行了比较。这种新方法是第二代小波理论与分层基础(多分辨率基础)的组合,并且当应用于FEM时,解决方案分为不同的细节级别。这些级别(也称为比例尺)由受紧凑支持的功能组成,允许仅在选定区域上添加细节。尽管此策略以很小的误差减小了整个系统的尺寸,但是所有比例尺都自然地耦合在一起,这意味着组成不同详细程度的功能之间存在相互作用。这种耦合迫使在添加细节时重新计算整个多分辨率系统,这也是方法上的一种冗余。使用第二代小波理论,可以对功能进行定制设计以使系统解耦,这意味着可以消除不同级别的功能之间的相互作用,并且有可能独立于先前的尺度来解决进一步的细节。此属性显着提高了算法的性能。相反,公式(进而是算法设计)的复杂性也增加了,这就是在此主题上应用如此少的原因。像该方法一样,可以使用各种策略对自适应OCWB进行编程。由于结果是根据常规PC上的处理时间显示的,因此这两种算法都是采用类似的结构开发的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号