...
首页> 外文期刊>Information Theory, IEEE Transactions on >Performance Analysis of ZF and MMSE Equalizers for MIMO Systems: An In-Depth Study of the High SNR Regime
【24h】

Performance Analysis of ZF and MMSE Equalizers for MIMO Systems: An In-Depth Study of the High SNR Regime

机译:MIMO系统的ZF和MMSE均衡器的性能分析:高SNR机制的深入研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents an in-depth analysis of the zero forcing (ZF) and minimum mean squared error (MMSE) equalizers applied to wireless multiinput multioutput (MIMO) systems with no fewer receive than transmit antennas. In spite of much prior work on this subject, we reveal several new and surprising analytical results in terms of output signal-to-noise ratio (SNR), uncoded error and outage probabilities, diversity-multiplexing (D-M) gain tradeoff and coding gain. Contrary to the common perception that ZF and MMSE are asymptotically equivalent at high SNR, we show that the output SNR of the MMSE equalizer (conditioned on the channel realization) is $rho_{rm mmse} = rho_{rm zf}+eta_{ssr snr}$, where $rho_{rm zf}$ is the output SNR of the ZF equalizer and that the gap $eta_{ssr snr}$ is statistically independent of $rho_{rm zf}$ and is a nondecreasing function of input SNR. Furthermore, as ${ssr snr}ura{} infty$, $eta_{ssr snr}$ converges with probability one to a scaled ${cal F}$ random variable. It is also shown that at the output of the MMSE equalizer, the interference-to-noise ratio (INR) is tightly upper bounded by ${{eta_{ssr snr}}over {rho_{rm zf}}}$. Using the decomposition of the output SNR of MMSE, we can approximate its uncoded error, as well as outage probabilities through a numerical integral which accurately reflects the respective SNR gains of the MMSE equalizer relative to its ZF counterpart. The $epsilon$-outage capacities of the two equalizers, however, coincide in the asymptotically high SNR regime. We also provide the solution to a long-standing open problem: applying optimal detection ordering does not improve the D-M tradeoff of the vertical Bell Labs layered Space-Time (V-BLAST) architecture. It is shown that optimal ordering yields a SNR gain of $10log_{10}N$ dB in the ZF-V-BLAST architecture (where $N$ is the number of transmit antennas) whereas for the MMSE-V-BLAST architecture, the SNR gain due to ordered detection is even better and significantly so.
机译:本文深入分析了零强制(ZF)和最小均方误差(MMSE)均衡器,这些均衡器应用于无线多输入多输出(MIMO)系统,其接收天线不少于发射天线。尽管在此问题上已有许多先验工作,但我们在输出信噪比(SNR),未编码错误和中断概率,分集多路复用(D-M)增益折衷和编码增益方面揭示了一些令人惊讶的新分析结果。与通常认为ZF和MMSE在高SNR时渐近等效相反,我们表明MMSE均衡器的输出SNR(取决于信道实现)为$ rho_ {rm mmse} = rho_ {rm zf} + eta_ {ssr snr} $,其中$ rho_ {rm zf} $是ZF均衡器的输出SNR,间隙$ eta_ {ssr snr} $统计上独立于$ rho_ {rm zf} $,并且是输入SNR的非递减函数。此外,随着$ {ssr snr} ura {} infty $,$ eta_ {ssr snr} $以概率1收敛到缩放后的$ {cal F} $随机变量。还显示出,在MMSE均衡器的输出处,干扰噪声比(INR)由$ {{{eta_ {ssr snr}}}到{rho_ {rm zf}}} $的上限严格限制。使用MMSE的输出SNR的分解,我们可以通过一个数值积分来近似地估计其未编码误差以及中断概率,该数值积分可以准确反映MMSE均衡器相对于其ZF对应物的SNR增益。但是,两个均衡器的ε中断容量在渐近高SNR方案中重合。我们还为一个长期存在的开放问题提供了解决方案:应用最佳检测顺序并不能改善垂直贝尔实验室分层时空(V-BLAST)体系结构的D-M权衡。结果表明,在ZF-V-BLAST架构中,最佳排序产生的SNR增益为$ 10log_ {10} N $ dB(其中,$ N $为发射天线的数量),而对于MMSE-V-BLAST架构,归因于有序检测的SNR增益甚至更好,更明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号