首页> 外文期刊>Information Theory, IEEE Transactions on >Degrees of Freedom of MIMO Cellular Networks: Decomposition and Linear Beamforming Design
【24h】

Degrees of Freedom of MIMO Cellular Networks: Decomposition and Linear Beamforming Design

机译:MIMO蜂窝网络的自由度:分解和线性波束成形设计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates the symmetric degrees of freedom (DoF) of multiple-input multiple-output (MIMO) cellular networks with cells and users per cell, having antennas at each base station and antennas at each user. In particular, we investigate techniques for achievability that are based on either decomposition with asymptotic interference alignment or linear beamforming schemes and show that there are distinct regimes of , where one outperforms the other. We first note that both one-sided and two-sided decomposition with asymptotic interference alignment achieve the same DoF. We then establish specific antenna configurations under which the DoF achieved using decomposition-based schemes is optimal by deriving a set of outer bounds on the symmetric DoF. Using these results, we completely characterize the optimal DoF of any-cell network with single-antenna users. For linear beamforming schemes, we first focus on small networks and propose a structured approach to linear beamforming based on a notion called packing ratios. Packing ratio describes the interference footprint or shadow cast by a set of transmit beamformers and enables us to identify the underlying structures for aligning interference. Such a structured beamforming design can be shown to achieve the optimal spatially normalized DoF (sDoF) of two-cell two-user/cell network and the two-cell three-user/cell network. For larger networks, we develop an unstructured approach to linear interference alignment, where transmit beamformers are designed t- satisfy conditions for interference alignment without explicitly identifying the underlying structures for interference alignment. The main numerical insight of this paper is that such an approach appears to be capable of achieving the optimal sDoF for MIMO cellular networks in regimes where linear beamforming dominates asymptotic decomposition, and a significant portion of sDoF elsewhere. Remarkably, polynomial identity test appears to play a key role in identifying the boundary of the achievable sDoF region in the former case.
机译:本文研究具有每个小区和每个用户的多输入多输出(MIMO)蜂窝网络的对称自由度(DoF),每个基站都有天线,每个用户都有天线。特别是,我们研究了基于渐近干扰对齐的分解或线性波束形成方案的可实现性技术,并显示出存在的不同机制,其中一种优于另一种。我们首先注意到,渐近干涉对准的单侧和双侧分解都实现了相同的自由度。然后,我们建立特定的天线配置,在该配置下,通过推导对称DoF的一组外边界,使用基于分解的方案实现的DoF最佳。使用这些结果,我们可以完全表征具有单天线用户的任何小区网络的最佳DoF。对于线性波束形成方案,我们首先关注小型网络,然后基于称为打包率的概念提出一种结构化的线性波束形成方法。堆积率描述了一组发射波束形成器产生的干扰足迹或阴影,并使我们能够识别用于对齐干扰的底层结构。可以示出这种结构化的波束成形设计以实现两小区两用户/小区网络和两小区三用户/小区网络的最佳空间归一化DoF(sDoF)。对于较大的网络,我们开发了一种用于线性干扰对准的非结构化方法,其中将发射波束成形器设计为满足干扰对准的条件,而无需明确标识用于干扰对准的基础结构。本文的主要数值见解是,这种方法似乎能够在线性波束成形主导渐近分解以及其他部分sDoF的情况下,实现MIMO蜂窝网络的最佳sDoF。值得注意的是,在前一种情况下,多项式同一性检验似乎在确定可实现的sDoF区域的边界方面起着关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号