首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >In-Flight Validation of Mid- and Thermal Infrared Data From the Multispectral Thermal Imager (MTI) Using an Automated High-Altitude Validation Site at Lake Tahoe CA/NV, USA
【24h】

In-Flight Validation of Mid- and Thermal Infrared Data From the Multispectral Thermal Imager (MTI) Using an Automated High-Altitude Validation Site at Lake Tahoe CA/NV, USA

机译:使用美国加利福尼亚州塔霍湖的自动高空验证站点对来自多光谱热像仪(MTI)的中红外和热红外数据进行飞行中验证

获取原文
获取原文并翻译 | 示例
       

摘要

The Multispectral Thermal Imager (MTI) is a 15-band satellite-based imaging system. Two of the bands (J, K) are located in the mid-infrared (3–5$muhbox m$) wavelength region: J, 3.5–4.1$muhbox m$and K, 4.9–5.1$muhbox m$, and three of the bands (L, M, N) are located in the thermal infrared (8–12$mu hbox m$) wavelength region: L, 8.0–8.4$muhbox m$; M, 8.4–8.8$muhbox m$; and N, 10.2–10.7$muhbox m$. The absolute radiometric accuracy of the MTI data acquired in bands J-N was assessed over a period of approximately three years using data from the Lake Tahoe, CA/NV, automated validation site. Assessment involved using a radiative transfer model to propagate surface skin temperature measurements made at the time of the MTI overpass to predict the vicarious at-sensor radiance. The vicarious at-sensor radiance was convolved with the MTI system response functions to obtain the vicarious at-sensor MTI radiance in bands J–N. The vicarious radiances were then compared with the instrument measured radiances. In order to avoid any reflected solar contribution in the mid-infrared bands, only nighttime scenes were used in the analysis of bands J and K. Twelve cloud-free scenes were used in the analysis of the data from the mid-infrared bands (J, K), and 23 cloud-free scenes were used in the analysis of the thermal infrared bands (L, M, N). The scenes had skin temperatures ranging between 4.4 and 18.6$ ^circhbox C$. The skin temperature was found to be, on average,$0.18pm0.36 ^circhbox C$cooler than the bulk temperature during the day and$0.65pm0.31 ^circhbox C$cooler than the bulk temperature at night. The smaller skin effect during the day was attributed to solar heating. The mean and standard deviation of the percent differences between the vicarious (predicted) at-sensor radiance convolved to the MTI bandpasses and the MTI measured radiances were$- 1.38pm2.32$,$- 2.46pm1.96$,$- 0.04pm 0.78$,$- 1.97pm 0.62$,$- 1.59pm 0.55$for bands J–N, respectively. The results in-dicate that, with the exception of band L, the instrument measured radiances are warmer than expected.
机译:多光谱热像仪(MTI)是基于卫星的15波段成像系统。两个波段(J,K)位于中红外波段(3–5 $ muhbox m $):J,3.5–4.1 $ muhbox m $和K,4.9–5.1 $ muhbox m $和三个波段(L,M,N)位于热红外(8–12 $ muhbox m $)波长范围内:L,8.0–8.4 $ muhbox m $; M,8.4–8.8 $ muhbox m $; N,10.2–10.7 $ muhbox m $。使用来自CA / NV的太浩湖自动验证站点的数据,在大约三年的时间段内评估了在J-N波段中采集的MTI数据的绝对辐射精确度。评估涉及使用辐射传递模型来传播在MTI立交时进行的表面皮肤温度测量,以预测替代的传感器辐射度。将替代的传感器到达辐射点与MTI系统响应函数进行卷积,以获得J–N波段的替代传感器到达辐射点。然后将替代的辐射度与仪器测量的辐射度进行比较。为了避免在中红外波段产生任何反射的太阳贡献,仅在J和K波段的分析中使用了夜间场景。在分析中红外波段的数据中使用了十二个无云场景(J ,K)和23个无云场景用于热红外波段(L,M,N)的分析。这些场景的皮肤温度介于4.4和18.6 $ ^ circhbox C $之间。发现皮肤温度平均比白天的整体温度低0.18pm0.36℃,比夜间的体温低0.65pm0.31℃。白天对皮肤的影响较小,这归因于太阳能加热。替代的(预测的)传感器辐射照度与MTI带通卷积和MTI测量的辐射照度之间的百分比差异的平均值和标准差为$-1.38pm2.32 $,$-2.46pm1.96 $,$-0.04pm J–N乐队分别为0.78 $,$-1.97pm 0.62 $,$-1.59pm 0.55 $。结果表明,除频带L外,仪器测得的辐射度比预期的要高。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号