...
首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds
【24h】

Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds

机译:由于未检测到薄云,星载1064 nm单通道激光雷达在冰层测高中的不确定性

获取原文
获取原文并翻译 | 示例
           

摘要

In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus-cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 ¿rad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.
机译:为了支持冰,云和陆地高程卫星(ICESat)-II的任务,本文研究了由未检测到的薄云引起的地表高程测量中的偏差。 ICESat-II卫星可能只有一个1064 nm单通道激光雷达。 1064 nm通道比532 nm通道对云的敏感度低,它往往会错过薄云。先前的研究表明,云颗粒的散射会增加光子路径的长度,从而导致星载激光雷达的冰盖高程测量结果出现偏差。这种效应称为大气路径延迟。本文通过以下方式对以前的研究进行补充:首先,根据ICESat机载的Geoscience激光测高仪系统以及Terra和Aqua机载的中分辨率成像光谱仪(MODIS)的云统计数据,估算冰盖上的大气路径延迟。其次,使用为MODIS卷云微物理模型开发的最新相位函数研究了云的粒径和形状的影响。第三,研究了各种散射事件对路径延迟的贡献,建立了一阶散射贡献的解析模型。本文重点研究路径延迟与望远镜视场(FOV)的关系。结果表明,减少望远镜的视场角可以显着减少预期的路径延迟。例如,说明了由格陵兰岛和南极洲上方的1064 nm通道未探测到的薄云所引起的FOV = 167 rad(表面上直径为100 m的圆)的平均路径延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号