...
首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Signal Processing for Microwave Array Imaging: TDC and Sparse Recovery
【24h】

Signal Processing for Microwave Array Imaging: TDC and Sparse Recovery

机译:微波阵列成像的信号处理:TDC和稀疏恢复

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Unlike 1-D and 2-D microwave images, 3-D microwave image behaves typical sparsity. Consequently, sparse recovery technique can be used for 3-D microwave signal processing. Three popular signal processing techniques, the time-domain correlation method (TDC), pseudo-inverse method (PI), and compressed sensing method (CS), are discussed in this paper. We find that PI and CS methods can eliminate the side-lobe coupling error of TDC method with the cost of additional noise gains. The performances of TDC, PI, and CS methods are influenced by the autocorrelation matrix of the measurement matrix, which is determined by the distribution of the sparse array and the number of receivers. In general case, the measurement matrix of microwave 3-D imaging cannot be considered as a group of independent identically distributed (i.i.d.) random variables with zero mean. As a result, many properties developed under the i.i.d. Gauss random variable and i.i.d. random variable with zero mean hypotheses cannot explain the microwave 3-D imaging problem accurately. Further discussions on the effects of the image sparsity and number of receivers on TDC, PI, and CS methods are presented in this paper. In usual case, the sparser the image is, the better the imaging result is. In the aspect of the number of receivers (assuming that array size is fixed), when the receiver number is relatively small, increasing it can reduce the coupling error of TDC method and the noise gains of PI and CS methods. When the number of receivers is large enough, increasing it makes less contribution to improving the coupling error or noise gains. Finally, we show that under ill condition, CS method is far more stable than PI method by numerical experiment.
机译:与1-D和2-D微波图像不同,3-D微波图像表现出典型的稀疏性。因此,稀疏恢复技术可用于3-D微波信号处理。本文讨论了三种流行的信号处理技术:时域相关方法(TDC),伪逆方法(PI)和压缩感测方法(CS)。我们发现PI和CS方法可以消除TDC方法的旁瓣耦合误差,但要付出额外的噪声增益。 TDC,PI和CS方法的性能受测量矩阵的自相关矩阵影响,该矩阵由稀疏阵列的分布和接收器的数量决定。在一般情况下,微波3-D成像的测量矩阵不能被视为一组均值为零的独立均匀分布(i.i.d.)随机变量。结果,在i.i.d.高斯随机变量和i.d.零均值假设的随机变量无法准确解释微波3-D成像问题。本文进一步讨论了图像稀疏度和接收器数量对TDC,PI和CS方法的影响。通常情况下,图像越稀疏,成像效果越好。在接收器数量方面(假设阵列大小固定),当接收器数量相对较小时,增加接收器数量可以减少TDC方法的耦合误差以及PI和CS方法的噪声增益。当接收器的数量足够大时,增加接收器对改善耦合误差或噪声增益的贡献较小。最后,通过数值实验表明,在病态条件下,CS方法比PI方法更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号