首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems
【24h】

Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems

机译:多Agent动力系统中的时滞诱导共识和拟共识

获取原文
获取原文并翻译 | 示例
           

摘要

This paper studies consensus and quasi-consensus in multi-agent dynamical systems. A linear consensus protocol in the second-order dynamics is designed where both the current and delayed position information is utilized. Time delay, in a common perspective, can induce periodic oscillations or even chaos in dynamical systems. However, it is found in this paper that consensus and quasi-consensus in a multi-agent system cannot be reached without the delayed position information under the given protocol while they can be achieved with a relatively small time delay by appropriately choosing the coupling strengths. A necessary and sufficient condition for reaching consensus in multi-agent dynamical systems is established. It is shown that consensus and quasi-consensus can be achieved if and only if the time delay is bounded by some critical value which depends on the coupling strength and the largest eigenvalue of the Laplacian matrix of the network. The motivation for studying quasi-consensus is provided where the potential relationship between the second-order multi-agent system with delayed positive feedback and the first-order system with distributed-delay control input is discussed. Finally, simulation examples are given to illustrate the theoretical analysis.
机译:<?Pub Dtl?>本文研究多智能体动力系统中的共识和准共识。设计了二阶动力学中的线性共识协议,其中同时利用了当前位置信息和延迟位置信息。从通常的角度来看,时间延迟会引起动态系统中的周期性振荡甚至混乱。但是,在本文中发现,如果没有给定协议下的延迟位置信息,则无法在多代理系统中达成共识和准共识,而通过适当选择耦合强度可以在相对较小的时延下实现它们。建立了在多主体动力学系统中达成共识的充要条件。结果表明,当且仅当时间延迟由某个临界值限制时才可以达成共识和准共识,该临界值取决于网络的拉普拉斯矩阵的耦合强度和最大特征值。提供了研究准共识的动机,讨论了具有正反馈延迟的二阶多智能体系统与具有分布延迟控制输入的一阶系统之间的潜在关系。最后,通过仿真算例说明理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号