...
首页> 外文期刊>IEEE transactions on circuits and systems . I , Regular papers >Efficient FPGA Implementations of Pair and Triplet-Based STDP for Neuromorphic Architectures
【24h】

Efficient FPGA Implementations of Pair and Triplet-Based STDP for Neuromorphic Architectures

机译:基于对和三重态STDP的神经形态架构的高效FPGA实现

获取原文
获取原文并翻译 | 示例

摘要

Synaptic plasticity is envisioned to bring about learning and memory in the brain. Various plasticity rules have been proposed, among which spike-timing-dependent plasticity (STDP) has gained the highest interest across various neural disciplines, including neuromorphic engineering. Here, we propose highly efficient digital implementations of pair-based STDP (PSTDP) and triplet-based STDP (TSTDP) on field programmable gate arrays that do not require dedicated floating-point multipliers and hence need minimal hardware resources. The implementations are verified by using them to replicate a set of complex experimental data, including those from pair, triplet, quadruplet, frequency-dependent pairing, as well as Bienenstock-Cooper-Munro experiments. We demonstrate that the proposed TSTDP design has a higher operating frequency that leads to 2.46x faster weight adaptation (learning) and achieves 11.55 folds improvement in resource usage, compared to a recent implementation of a calcium-based plasticity rule capable of exhibiting similar learning performance. In addition, we show that the proposed PSTDP and TSTDP designs, respectively, consume 2.38x and 1.78x less resources than the most efficient PSTDP implementation in the literature. As a direct result of the efficiency and powerful synaptic capabilities of the proposed learning modules, they could be integrated into large-scale digital neuromorphic architectures to enable high-performance STDP learning.
机译:可以预见突触可塑性在大脑中引起学习和记忆。已经提出了各种可塑性规则,其中依赖于尖峰时间的可塑性(STDP)在包括神经形态工程学在内的各种神经学科中引起了最高的兴趣。在这里,我们提出了在现场可编程门阵列上基于对的STDP(PSTDP)和基于三重态的STDP(TSTDP)的高效数字实现,这些实现不需要专用的浮点乘法器,因此需要的硬件资源最少。通过使用它们来复制一组复杂的实验数据(包括来自配对,三重态,四联体,频率依赖的配对以及Bienenstock-Cooper-Munro实验的数据)来验证实现。我们证明,与最近实现的具有类似学习性能的钙基可塑性规则相比,拟议的TSTDP设计具有更高的工作频率,从而使重量适应(学习)速度提高了2.46倍,并实现了11.55倍的资源利用改善。 。此外,我们表明,与文献中最有效的PSTDP实现方式相比,拟议的PSTDP和TSTDP设计分别消耗了2.38倍和1.78倍的资源。所提出的学习模块的效率和强大的突触功能的直接结果是,可以将它们集成到大规模数字神经形态架构中,以实现高性能的STDP学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号