...
首页> 外文期刊>IEEE transactions on biomedical circuits and systems >A Chopped Neural Front-End Featuring Input Impedance Boosting With Suppressed Offset-Induced Charge Transfer
【24h】

A Chopped Neural Front-End Featuring Input Impedance Boosting With Suppressed Offset-Induced Charge Transfer

机译:一种切碎的神经前端,具有输入阻抗升压,具有抑制偏移诱导的电荷转移

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Modern neuromodulation systems typically provide a large number of recording and stimulation channels, which reduces the available power and area budget per channel. To maintain the necessary input-referred noise performance despite growingly rigorous area constraints, chopped neural front-ends are often the modality of choice, as chopper-stabilization allows to simultaneously improve (1/f) noise and area consumption. The resulting issue of a drastically reduced input impedance has been addressed in prior art by impedance boosters based on voltage buffers at the input. These buffers precharge the large input capacitors, reduce the charge drawn from the electrodes and effectively boost the input impedance. Offset on these buffers directly translates into charge-transfer to the electrodes, which can accelerate electrode aging. To tackle this issue, a voltage buffer with ultra-low time-averaged offset is proposed, which cancels offset by periodic reconfiguration, thereby minimizing unintended charge transfer. This article explains the background and circuit design in detail and presents measurement results of a prototype implemented in a 180 nm HV CMOS process. The measurements confirm that signal-independent, buffer offset induced charge transfer occurs and can be mitigated by the presented buffer reconfiguration without adversely affecting the operation of the input impedance booster. The presented neural recorder front-end achieves state of the art performance with an area consumption of 0.036 mm (2), an input referred noise of 1.32 mu V-rms (1 to 200 Hz) and 3.36 mu V-rms (0.2 to 10 kHz), power consumption of 13.7 mu W from 1.8 V supply, as well as CMRR and PSRR >= 83 dB at 50 Hz.
机译:现代神经调节系统通常提供大量的记录和刺激通道,从而降低了每个通道的可用功率和区域预算。为了维持必要的输入引用的噪声性能,尽管具有变得越来越严格的区域约束,切碎的神经前端通常是选择的模式,因为斩波稳定允许同时改善(1 / f)噪声和面积消耗。通过基于输入的电压缓冲器,在现有技术中,在现有技术中解决了巨大的输入阻抗的产生问题。这些缓冲器预充电了大输入电容,减少了从电极汲取的电荷,并有效地提高输入阻抗。这些缓冲液上的偏移直接转换为电荷转移到电极,可以加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,其通过周期性重新配置取消偏移,从而最小化意外电荷传输。本文详细介绍了背景和电路设计,并呈现了在180nm HV CMOS过程中实现的原型的测量结果。测量结果确认,发生信号独立的缓冲偏移感应电荷传输,并且可以通过所提出的缓冲器重新配置来减轻,而不会对输入阻抗升压器的操作产生不利影响。所呈现的神经记录器前端实现了最新的现有性能,面积消耗为0.036mm(2),输入引用噪声为1.32μmV-rms(1至200Hz)和3.36μV-rms(0.2到10 KHZ),13.7μW的功耗从1.8 V电源,以及50 Hz的CMRR和PSRR> = 83 dB。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号