首页> 外文期刊>Biomedical Circuits and Systems, IEEE Transactions on >Liquid State Machine With Dendritically Enhanced Readout for Low-Power, Neuromorphic VLSI Implementations
【24h】

Liquid State Machine With Dendritically Enhanced Readout for Low-Power, Neuromorphic VLSI Implementations

机译:具有低功耗,神经形态VLSI实现的齿面增强读数的液体状态机

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM), a popular model for reservoir computing. Compared to the parallel perceptron architecture trained by the p-delta algorithm, which is the state of the art in terms of performance of readout stages, our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity (two compartment model). The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best ‘combination’ of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that compared to a single perceptron using analog weights, this architecture for the readout can attain, even by using the same number of binary valued synapses, up to 3.3 times less error for a two-class spike train classification problem and 2.4 times less error for an input rate approximation task. Even with 60 times larger synapses, a group of 60 parallel perceptrons cannot attain the performance of the proposed dendritically enhanced readout. An additional advantage of this method for hardware implementations is that the ‘choice’ of connectivity can be easily implemented exploiting address event representation (AER) protocols commonly used in current neuromorphic systems where the connection matrix is stored in memory. Also, due to the use of binary synapses, our proposed method is more robust against statistical variations.
机译:在本文中,我们描述了一种新的基于神经的,对硬件友好的读出平台,用于液体状态机(LSM),这是一种用于储层计算的流行模型。相比于p-delta算法训练的并行感知器体系结构(就读出阶段的性能而言,这是最先进的技术),我们的读出体系结构和学习算法可通过更少的突触资源获得更好的性能,从而使其对VLSI实现具有吸引力。受生物神经元中树突的非线性特性的启发,我们的读出阶段合并了具有多个树突的神经元,这些神经元具有集总的非线性(两部分模型)。每个分支上的突触连接数量明显少于来自液态神经元的连接总数,并且学习算法试图找到每个分支上输入连接的最佳“组合”以减少错误。因此,学习涉及读出网络的网络重新布线(NRW),类似于在其生物学对应物中观察到的结构可塑性。我们表明,与使用模拟权重的单个感知器相比,即使使用相同数量的二进制值突触,这种读出结构也可以实现,针对两类尖峰序列分类问题的错误最多可减少3.3倍,而错误代码则可减少2.4倍输入速率近似任务的误差。即使有60倍大的突触,一组60个平行的感知器也无法达到建议的树状增强读出的性能。这种方法在硬件实施中的另一个优点是,可以利用当前神经形态系统中常用的地址事件表示(AER)协议轻松实现连接的“选择”,其中连接矩阵存储在内存中。同样,由于使用了二进制突触,我们提出的方法对统计变化更加健壮。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号