...
首页> 外文期刊>Signal Processing Magazine, IEEE >Communicating While Computing: Distributed mobile cloud computing over 5G heterogeneous networks
【24h】

Communicating While Computing: Distributed mobile cloud computing over 5G heterogeneous networks

机译:计算时进行通信:通过5G异构网络进行分布式移动云计算

获取原文
获取原文并翻译 | 示例
           

摘要

Current estimates of mobile data traffic in the years to come foresee a 1,000 increase of mobile data traffic in 2020 with respect to 2010, or, equivalently, a doubling of mobile data traffic every year. This unprecedented growth demands a significant increase of wireless network capacity. Even if the current evolution of fourth-generation (4G) systems and, in particular, the advancements of the long-term evolution (LTE) standardization process foresees a significant capacity improvement with respect to third-generation (3G) systems, the European Telecommunications Standards Institute (ETSI) has established a roadmap toward the fifth-generation (5G) system, with the aim of deploying a commercial system by the year 2020 [1]. The European Project named ?Mobile and Wireless Communications Enablers for the 2020 Information Society? (METIS), launched in 2012, represents one of the first international and large-scale research projects on fifth generation (5G) [2]. In parallel with this unparalleled growth of data traffic, our everyday life experience shows an increasing habit to run a plethora of applications specifically devised for mobile devices, (smartphones, tablets, laptops)for entertainment, health care, business, social networking, traveling, news, etc. However, the spectacular growth in wireless traffic generated by this lifestyle is not matched with a parallel improvement on mobile handsets? batteries, whose lifetime is not improving at the same pace [3]. This determines a widening gap between the energy required to run sophisticated applications and the energy available on the mobile handset. A possible way to overcome this obstacle is to enable the mobile devices, whenever possible and convenient, to offload their most energy-consuming tasks to nearby fixed servers. This strategy has been studied for a long time and is reported in the literature under different names, such as cyberforaging [4] or computation offloading [5], [6]. In recent years, a strong impu- se to computation offloading has come through cloud computing (CC), which enables the users to utilize resources on demand. The resources made available by a cloud service provider are: 1) infrastructures, such as network devices, storage, servers, etc., 2) platforms, such as operating systems, offering an integrated environment for developing and testing custom applications, and 3) software, in the form of application programs. These three kinds of services are labeled, respectively, as infrastructure as a service, platform as a service, and software as a service. In particular, one of the key features of CC is virtualization, which makes it possible to run multiple operating systems and multiple applications over the same machine (or set of machines), while guaranteeing isolation and protection of the programs and their data. Through virtualization, the number of virtual machines (VMs) can scale on ?demand, thus improving the overall system computational efficiency. Mobile CC (MCC) is a specific case of CC where the user accesses the cloud services through a mobile handset [5]. The major limitations of today?s MCC are the energy consumption associated to the radio access and the latency experienced in reaching the cloud provider through a wide area network (WAN). Mobile users located at the edge of macrocellular networks are particularly disadvantaged in terms of power consumption and, furthermore, it is very difficult to control latency over a WAN. As pointed out in [7]?[9], humans are acutely sensitive to delay and jitter: as latency increases, interactive response suffers. Since the interaction times foreseen in 5G systems, in particular in the so-called tactile Internet [10], are quite small (in the order of milliseconds), a strict latency control must be somehow incorporated in near future MCC. Meeting this constraint requires a deep ?rethinking of the overall service chain, from the physical layer up to virtualization.
机译:根据对未来几年移动数据流量的当前估计,到2020年,与2010年相比,移动数据流量将增加1,000,或者相当于每年移动数据流量的两倍。这种空前的增长要求无线网络容量的显着增加。即使当前第四代(4G)系统的演进,尤其是长期演进(LTE)标准化进程的进步预见到第三代(3G)系统的容量将显着提高,欧洲电信标准协会(ETSI)建立了通往第五代(5G)系统的路线图,目标是到2020年部署商用系统[1]。欧洲项目名为“ 2020年信息社会的移动和无线通信使能器”。 (METIS)于2012年启动,代表了第一个有关第五代(5G)的国际大型研究项目之一[2]。在无与伦比的数据流量增长的同时,我们的日常生活经验显示出越来越多的习惯来运行大量专门为娱乐,保健,商业,社交网络,旅行,移动设备(智能手机,平板电脑,笔记本电脑)设计的应用程序新闻等。然而,这种生活方式带来的无线流量的惊人增长与手机的并行改进不匹配吗?电池,其寿命没有以相同的速度提高[3]。这决定了运行复杂应用程序所需的能量与移动手机上可用的能量之间的差距越来越大。克服此障碍的一种可能方法是使移动设备在任何可能且方便的情况下,将其最耗能的任务卸载到附近的固定服务器上。这种策略已经研究了很长时间,并且在文献中以不同的名称进行了报道,例如网络搜寻[4]或计算卸载[5],[6]。近年来,通过云计算(CC)极大地推动了计算分流,这使用户可以按需利用资源。云服务提供商提供的资源包括:1)基础结构,例如网络设备,存储,服务器等; 2)平台,例如操作系统,提供用于开发和测试自定义应用程序的集成环境;以及3)软件,以应用程序的形式。这三种服务分别标记为基础设施即服务,平台即服务和软件即服务。特别地,CC的关键功能之一是虚拟化,它使在同一台计算机(或一组计算机)上运行多个操作系统和多个应用程序成为可能,同时保证了程序及其数据的隔离和保护。通过虚拟化,虚拟机(VM)的数量可以按需扩展,从而提高了整体系统的计算效率。移动CC(MCC)是CC的一种特殊情况,其中用户通过移动手机访问云服务[5]。当今MCC的主要局限性是与无线电访问相关的能耗以及通过广域网(WAN)到达云提供商所经历的延迟。位于宏蜂窝网络边缘的移动用户在功耗方面特别不利,此外,控制WAN上的延迟非常困难。正如[7]?[9]中指出的那样,人类对延迟和抖动非常敏感:随着延迟的增加,交互响应会受到影响。由于在5G系统中,特别是在所谓的触觉互联网[10]中预计的交互时间非常短(以毫秒为单位),因此必须在不久的将来的MCC中采用严格的延迟控制。要满足此约束,就需要对整个服务链进行深刻的思考,从物理层到虚拟化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号