首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Multiple Access in Cell-Free Networks: Outage Performance, Dynamic Clustering, and Deep Reinforcement Learning-Based Design
【24h】

Multiple Access in Cell-Free Networks: Outage Performance, Dynamic Clustering, and Deep Reinforcement Learning-Based Design

机译:无电机网络中的多次访问:中断性能,动态聚类和基于深度加强学习的设计

获取原文
获取原文并翻译 | 示例
           

摘要

In future cell-free (or cell-less) wireless networks, a large number of devices in a geographical area will be served simultaneously in non-orthogonal multiple access scenarios by a large number of distributed access points (APs), which coordinate with a centralized processing pool. For such a centralized cell-free network with static predefined beamforming design, we first derive a closed-form expression of uplink outage probability for a user/device. To reduce the complexity of joint processing of received signals in presence of a large number of devices and APs, we propose a novel dynamic cell-free network architecture. In this architecture, the distributed APs are clustered (i.e. partitioned) among a set of subgroups with each subgroup acting as a virtual AP in a distributed antenna system (DAS). The conventional static cell-free network is a special case of this dynamic cell-free network when the cluster size is one. For this dynamic cell-free network, we propose a successive interference cancellation (SIC)-enabled signal detection method and an inter-user-interference (IUI)-aware receive diversity combining scheme. We then formulate the general problem of clustering the APs and designing the beamforming vectors with an objective such as maximizing the sum rate or maximizing the minimum rate. To this end, we propose a hybrid deep reinforcement learning (DRL) model, namely, a deep deterministic policy gradient (DDPG)-deep double Q-network (DDQN) model to solve the optimization problem for online implementation with low complexity. The DRL model for sum-rate optimization significantly outperforms that for maximizing the minimum rate in terms of average per-user rate performance. Also, in our system setting, the proposed DDPG-DDQN scheme is found to achieve around 78% of the rate achievable through an exhaustive search-based design.
机译:在未来的无电池(或更小的)无线网络中,通过大量分布式接入点(AP)在非正交多次接入方案中同时供应大量地理区域中的设备。集中处理池。对于具有静态预定义的波束形成设计的这种集中式无单元网络,我们首先导出用户/设备的上行链路中断概率的闭合表达式。为了在存在大量设备和AP的存在下降低接收信号的联合处理的复杂性,我们提出了一种新的动态无细胞网络架构。在该架构中,分布式AP是在一组子组中的集群(即分区),其中每个子组充当分布式天线系统(DAS)中的虚拟AP。传统的静态电池无电机网络是当簇大小是一个时,这种动态无电池网络的特殊情况。对于这种无动态无单元网络,我们提出了连续的干扰消除(SIC)的信号检测方法和用户间干扰(IUI)-aware接收分集组合方案。然后,我们制定聚类AP的一般问题,并具有目标的波束成形向量,例如最大化总和速率或最大化最小速率。为此,我们提出了一个混合的深度加强学习(DRL)模型,即深度确定性政策梯度(DDPG)-Deep Double Q-Network(DDQN)模型,以解决具有低复杂性的在线实现的优化问题。 SUM速率优化的DRL模型显着优于最大限度地提高了平均每用户速率性能的最小速率。此外,在我们的系统设置中,发现所提出的DDPG-DDQN方案达到通过详尽的基于搜索设计可实现的速度的大约78%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号