首页> 外文期刊>IEEE Journal on Selected Areas in Communications >Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis
【24h】

Graph Neural Networks for Scalable Radio Resource Management: Architecture Design and Theoretical Analysis

机译:图形神经网络可扩展无线电资源管理:架构设计与理论分析

获取原文
获取原文并翻译 | 示例
           

摘要

Deep learning has recently emerged as a disruptive technology to solve challenging radio resource management problems in wireless networks. However, the neural network architectures adopted by existing works suffer from poor scalability and generalization, and lack of interpretability. A long-standing approach to improve scalability and generalization is to incorporate the structures of the target task into the neural network architecture. In this paper, we propose to apply graph neural networks (GNNs) to solve large-scale radio resource management problems, supported by effective neural network architecture design and theoretical analysis. Specifically, we first demonstrate that radio resource management problems can be formulated as graph optimization problems that enjoy a universal permutation equivariance property. We then identify a family of neural networks, named message passing graph neural networks (MPGNNs). It is demonstrated that they not only satisfy the permutation equivariance property, but also can generalize to large-scale problems, while enjoying a high computational efficiency. For interpretablity and theoretical guarantees, we prove the equivalence between MPGNNs and a family of distributed optimization algorithms, which is then used to analyze the performance and generalization of MPGNN-based methods. Extensive simulations, with power control and beamforming as two examples, demonstrate that the proposed method, trained in an unsupervised manner with unlabeled samples, matches or even outperforms classic optimization-based algorithms without domain-specific knowledge. Remarkably, the proposed method is highly scalable and can solve the beamforming problem in an interference channel with 1000 transceiver pairs within 6 milliseconds on a single GPU.
机译:深入学习最近被赋予了无线网络中挑战无线电资源管理问题的颠覆性技术。然而,现有作品采用的神经网络架构遭受可扩展性和泛化差,缺乏可解释性。改善可扩展性和泛化的长期途径是将目标任务的结构纳入神经网络架构。在本文中,我们建议应用图形神经网络(GNN)来解决大规模的无线电资源管理问题,由有效的神经网络架构设计和理论分析支持。具体地,我们首先表明无线电资源管理问题可以作为享受普通置换标准属性的图优化问题。然后,我们确定一个神经网络系列,名为<斜体xmlns:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/ XLINK“>消息传递图形神经网络(MPGNNS)。结果证明,它们不仅满足置换标准性质,而且可以概括到大规模的问题,同时享受高计算效率。对于解释和理论保证,我们证明了MPGNNS和一系列分布式优化算法之间的等价,然后用于分析基于MPGNN的方法的性能和泛化。具有功率控制和波束成形作为两个示例的广泛模拟,证明了所提出的方法,以未经标记的样本,匹配或甚至优于基于经典优化的算法,没有域特定的知识。值得注意的是,所提出的方法是高度可扩展的,并且可以在单个GPU上的6毫秒内具有1000个收发器对的干扰通道中的波束形成问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号