...
首页> 外文期刊>Hydrological Processes >Measured and modelled above- and below-canopy turbulent fluxes for a snow-dominated mountain forest using GEOtop
【24h】

Measured and modelled above- and below-canopy turbulent fluxes for a snow-dominated mountain forest using GEOtop

机译:使用GEOtop对以雪为主的高山森林的冠层上下湍流进行测量和建模

获取原文
获取原文并翻译 | 示例
           

摘要

The prediction of snowmelt in mountainous forests strongly depends on the accurate description of sensible and latent heat turbulent fluxes. Uncertainty about the within-canopy wind conditions especially poses a challenge, with relatively few studies examining both above- and below-canopy turbulent fluxes. In this study, turbulent flux predictions from a state-of-the-art watershed model GEOtop were verified against eddy covariance data from one above-canopy tower and two below-canopy towers in a snow-dominated coniferous forest in south-eastern Wyoming. The model was applied in one-dimensional vertical mode using field-observed vegetation parameters and laboratory-measured soil water retention data. The model was calibrated by identifying optimum values for the canopy fraction and the within-canopy eddy decay coefficient using the brute-force method. Above-canopy sensible heat flux at the Glacier Lakes Ecosystem Experiments Site was predicted reasonably well (r(2) = .851). The prediction of above-canopy latent heat flux was weaker (r(2) = .426). For latent heat flux, errors in 30-min values offset each other when fluxes were aggregated over time, resulting in realistic mean diurnal trends. Below-canopy turbulent flux at two sites in the Libby Creek Experimental Watershed were predicted with variable success with r(2) = .031-.146 for sensible heat flux and r(2) = .445-.581 for latent heat flux. Modelled below-canopy sensible heat flux was too low due to the underestimation of daytime ground surface temperature, because of not enough solar radiation reaching the soil surface. This study suggests that future work on GEOtop and related models should include better parameterizations of the ground surface energy balance to more reliably predict snowmelt and streamflow from mountainous forests.
机译:山区森林融雪的预测在很大程度上取决于对感热和潜热湍流的准确描述。冠层内部风况的不确定性尤其是一个挑战,很少有研究同时研究冠层以上和以下的湍流。在这项研究中,利用怀俄明州东南部雪域针叶林中一个顶盖塔和两个顶盖塔的涡流协方差数据验证了最新流域模型GEOtop的湍流通量预测。使用现场观察到的植被参数和实验室测得的土壤保水数据,以一维垂直模式应用该模型。通过使用蛮力法确定冠层分数和冠层内涡流衰减系数的最佳值来对模型进行校准。在Glacier Lakes生态系统实验点的冠层以上显热通量被合理预测(r(2)= .851)。冠层以上潜热通量的预测较弱(r(2)= .426)。对于潜热通量,当通量随时间聚集时,30分钟值中的误差会相互抵消,从而导致现实的平均日趋势。在Libby Creek实验流域的两个站点的冠层以下湍流被预测为具有可变成功,显热通量r(2)= .031-.146,潜热通量r(2)= .445-.581。由于白天没有足够的太阳辐射到达土壤表面,因此低估了白天的地表温度,因此模拟了冠层下的感热通量太低。这项研究表明,GEOtop和相关模型的未来工作应包括对地表能量平衡的更好参数化,以更可靠地预测山区森林的融雪和水流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号