...
首页> 外文期刊>Hydrological Processes >A top-down soil moisture and sap flux sampling design of a rain-snow transition mountain watershed
【24h】

A top-down soil moisture and sap flux sampling design of a rain-snow transition mountain watershed

机译:雨雪过渡山区流域自上而下的土壤水分和汁液通量采样设计

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a top-down approach for soil moisture and sap flux sampling design with the goal of understanding ecohydrologic response to interannual climate variation in the rain-snow transition watersheds. The design is based on a priori estimates of soil moisture and transpiration patterns using a physical distributed model, Regional Hydro-Ecologic Simulation System (RHESSys). RHESSys was initially calibrated with existing snow depth and streamflow data. Calibrated model estimates of seasonal trajectories of snowmelt, root-zone soil moisture storage, and transpiration were used to develop five hydrologic similarity indicators and map these at (30 m) patch scale across the study watershed. The partitioning around medoids-clustering algorithm was then used to define six distinctive spatially explicit clusters based on the five hydrologic similarity indictors. A representative site within each cluster was identified for sampling. For each site, soil moisture sensors were installed at the 30- and 90-cm depths and at the five soil pits and a sap flux sensor at the averaged-size white fir tree for each site. The model-based cluster analysis suggests that the elevation gradient and topographically driven flow drainage patterns are the dominant drivers of spatial patterns of soil moisture and transpiration. The comparison of model-based calculated hydrological similarity indicators with measured-data-based values shows that spatial patterns of field-sampled soil moisture data typically fell within uncertainty bounds of model-based estimates for each cluster. There were however several notable exceptions. The model failed to capture the soil moisture and sap flux dynamics in a riparian zone site and in a site where lateral subsurface flow may not follow surface topography. Results highlight the utility of using a hypothesis driven sampling strategy, based on a physically based model, for efficiently providing new information that can drive both future measurements and strategic refinements to model inputs, parameters, or structure that might reduce these errors. Future research will focus on strategies for using of finer scale representations of microclimate, topography, vegetation, and soil properties to improve models.
机译:本文提出了一种自上而下的土壤水分和汁液通量采样设计方法,旨在了解雨雪过渡流域对年际气候变化的生态水文响应。该设计基于使用物理分布式模型区域水生态模拟系统(RHESSys)的土壤水分和蒸腾模式的先验估计。 RHESSys最初是使用现有的积雪深度和流量数据进行校准的。使用校准的模型估计的融雪季节轨迹,根区土壤水分存储和蒸腾作用来开发五个水文相似性指标,并将其绘制在研究流域的(30 m)斑块规模上。然后,基于五个类水文相似性指标,使用围绕类固醇的聚类划分算法来定义六个独特的空间显性聚类。在每个集群中确定了一个代表性站点进行采样。对于每个站点,在每个站点的30厘米和90厘米深度以及五个土壤坑处安装土壤湿度传感器,并在平均大小的白杉树上安装树液通量传感器。基于模型的聚类分析表明,海拔梯度和地形驱动的流失模式是土壤水分和蒸腾作用空间格局的主要驱动因素。基于模型的计算水文相似性指标与基于测量数据的值的比较表明,田间采样土壤水分数据的空间模式通常落在每个集群基于模型的估计值的不确定性范围内。但是,有几个值得注意的例外。该模型未能捕获河岸带区域和侧向地下流动可能不遵循表面地形的区域的土壤水分和汁液通量动态。结果突出显示了使用基于物理模型的假设驱动抽样策略来有效提供新信息的实用性,该信息既可以驱动未来的测量结果,又可以进行战略改进,以模拟可能减少这些误差的输入,参数或结构。未来的研究将集中于使用微气候,地形,植被和土壤特性的更精细比例表示法来改进模型的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号