首页> 外文期刊>Hydrological ProcHydrological Processesrnesses >Fractal concept in numerical simulation of hydraulic fracturing of the hot dry rock geothermal reservoir
【24h】

Fractal concept in numerical simulation of hydraulic fracturing of the hot dry rock geothermal reservoir

机译:热干岩地热储层水力压裂数值模拟中的分形概念

获取原文
获取原文并翻译 | 示例
           

摘要

Hydraulic fracturing or hydraulic stimulation is one of the most effective methods of enhancing hot dry rock (HDR) geothermal system productivity. The 3D structure of the fractured rock is approximated by the network models of ‘fractal geometry’. The models of fracture networks are generated by distributing fractures randomly in space and assuming the fractal correlation = that incorporates the number of fractures , fractal length , fractal dimension and fracture density within the rock mass . This procedure makes it possible to characterize the geothermal reservoirs using parameters measured from field data. Based on this approach, a mathematical model of the hydraulic rock fracturing is proposed. The model incorporates approximations of the fracture mechanical behaviour drawn from the rock mechanics literature, a very simplified analysis of the operative physical processes and mapping of the connectivity of fracture network to a cubic regular grid. Along with the fractal-type distribution of the fracture lengths, the fracture surfaces are also assumed to follow fractal geometry. The latter allows numerical simulation of the natural rock fracture dilation caused by fracture shear offset. The other problem that can be resolved by fracture surface modelling is the apparent limitation on the number of fractures that can be analysed experimentally. In this respect, the suggested mathematical model can be used to simulate fractal surfaces identical to fractures found in the natural rocks. Taken together, these tools permit the approximate engineering resolution of the multi-parametric, highly complex mechanical problem. The reliability of the developed model was validated by comparisons with the experimentally determined data for the Hijiori deep reservoir. This implicitly justifies the numerical results and conclusions drawn in the present research. In particular, a series of computations indicate that the connectivity of the fracture network is greatly affected by the fractal dimension of the fracture network. The strong effect of the fractal dimension on the reservoir's size is also observed. The numerical results illustrate the controlling effect of the pressure and flow rate in the stimulating well for reservoir growth. Copyright © 2003 John Wiley & Sons, Ltd.
机译:水力压裂或水力压裂是提高热干岩(HDR)地热系统生产率的最有效方法之一。裂隙岩石的3D结构可以通过“分形几何”的网络模型来近似。裂缝网络的模型是通过在空间中随机分布裂缝并假设分形相关=结合了岩体中的裂缝数量,分形长度,分形维数和裂缝密度而生成的。该程序使得可以使用从现场数据测得的参数来表征地热储层。在此基础上,提出了水力压裂的数学模型。该模型包括从岩石力学文献中得出的断裂力学行为的近似值,对运行物理过程的非常简化的分析以及断裂网络与立方规则网格的连通性的映射。除了断裂长度的分形类型分布外,还假定断裂表面遵循分形几何形状。后者允许对由裂缝剪切偏移引起的天然岩石裂缝扩张进行数值模拟。裂缝表面建模可以解决的另一个问题是对可以通过实验分析的裂缝数量的明显限制。在这方面,建议的数学模型可用于模拟与天然岩石中发现的裂缝相同的分形表面。综合起来,这些工具可以解决多参数,高度复杂的机械问题的近似工程解决方案。通过与Hijiori深层储层的实验确定的数据进行比较,验证了开发模型的可靠性。这隐含地证明了本研究得出的数值结果和结论。特别是,一系列计算表明,裂缝网络的连通性受到裂缝网络的分形维数的极大影响。还观察到分形维数对储层大小的强烈影响。数值结果说明了增产井中压力和流速对储层生长的控制作用。版权所有©2003 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    Fracture Research Institute Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan. Fracture Research Institute Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan.;

    Fracture Research Institute Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan;

    Fracture Research Institute Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan;

    Fracture Research Institute Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan;

    Fracture Research Institute Graduate School of Engineering Tohoku University Sendai 980‐8579 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fracture; hydraulic stimulation; numerical simulation; fractured reservoir; fractal dimension; shear dilation;

    机译:裂缝;水力增产;数值模拟;储层破裂;分形维数;剪切扩张;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号