...
首页> 外文期刊>Hydrological Processes >Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem
【24h】

Spatial patterns of simulated transpiration response to climate variability in a snow dominated mountain ecosystem

机译:在以雪为主的山区生态系统中,模拟蒸腾作用对气候变化的响应的空间格局

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Transpiration is an important component of soil water storage and stream-flow and is linked with ecosystem productivity, species distribution, and ecosystem health. In mountain environments, complex topography creates heterogeneity in key controls on transpiration as well as logistical challenges for collecting representative measurements. In these settings, ecosystem models can be used to account for variation in space and time of the dominant controls on transpiration and provide estimates of transpiration patterns and their sensitivity to climate variability and change. The Regional Hydro-Ecological Simulation System (RHESSys) model was used to assess elevational differences in sensitivity of transpiration rates to the spatiotemporal variability of climate variables across the Upper Merced River watershed, Yosemite Valley, California, USA. At the basin scale, predicted annual transpiration was lowest in driest and wettest years, and greatest in moderate precipitation years (R~2 = 0.32 and 0.29, based on polynomial regression of maximum snow depth and annual precipitation, respectively). At finer spatial scales, responsiveness of transpiration rates to climate differed along an elevational gradient. Low elevations (1200-1800 m) showed little interannual variation in transpiration due to topographically controlled high soil moistures along the river corridor. Annual conifer stand transpiration at intermediate elevations (1800-2150 m) responded more strongly to precipitation, resulting in a unimodal relationship between transpiration and precipitation where highest transpiration occurred during moderate precipitation levels, regardless of annual air temperatures. Higher elevations (2150-2600 m) maintained this trend, but air temperature sensitivities were greater. At these elevations, snowfall provides enough moisture for growth, and increased temperatures influenced transpiration. Transpiration at the highest elevations (2600-4000 m) showed strong sensitivity to air temperature, little sensitivity to precipitation. Model results suggest elevational differences in vegetation water use and sensitivity to climate were significant and will likely play a key role in controlling responses and vulnerability of Sierra Nevada ecosystems to climate change.
机译:蒸腾作用是土壤蓄水和水流的重要组成部分,与生态系统生产力,物种分布和生态系统健康相关。在山区环境中,复杂的地形会在蒸腾作用的关键控制中产生异质性,并在收集代表性测量数据时遇到后勤挑战。在这些情况下,生态系统模型可用于解释主要控制蒸腾作用的空间和时间变化,并提供蒸腾模式的估计值及其对气候变化和变化的敏感性。区域水生态模拟系统(RHESSys)模型用于评估美国加利福尼亚州优胜美地山谷上默塞德河上游流域的蒸腾速率对气候变量时空变化敏感性的高程差异。在流域尺度上,预测的年蒸腾量在最干燥和最湿润的年份最低,而在中等降水年份最大(分别基于最大雪深和年降水量的多项式回归,R〜2 = 0.32和0.29)。在更精细的空间尺度上,蒸腾速率对气候的响应沿高度梯度变化。低海拔(1200-1800 m)由于沿河走廊地形受控的高土壤湿度而没有蒸腾的年际变化。在中部海拔高度(1800-2150 m),针叶林的年蒸腾对降水的响应更为强烈,从而导致了蒸腾与降水之间的单峰关系,无论中等气温如何,最高的蒸腾发生在中等降水水平。更高的海拔(2150-2600 m)保持了这种趋势,但是空气温度敏感性更高。在这些海拔地区,降雪为生长提供了足够的水分,并且温度升高影响了蒸腾作用。最高海拔(2600-4000 m)的蒸腾表现出对气温的强烈敏感性,对降水的敏感性很小。模型结果表明,植被用水的海拔差异和对气候的敏感性差异很大,并且可能在控制内华达山脉生态系统对气候变化的响应和脆弱性中发挥关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号