首页> 外文期刊>Hydrological Processes >Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems
【24h】

Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

机译:基于植被指数的作物系数,通过遥感估算农业和自然生态系统的蒸散量

获取原文
获取原文并翻译 | 示例
       

摘要

Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil evaporation. Copyright © 2011 John Wiley & Sons, Ltd.
机译:在给定的气象条件下,根据参考作物的蒸散量(ET),开发出作物系数来确定作物的需水量。从1980年代开始,通过蒸渗仪研究得出的或由专家意见确定的作物系数开始由遥感植被指数(VI)进行补充,该指数可逐场测量作物的实际状况。 VI根据冠层的可见光和近红外(NIR)光的反射率来测量绿叶的密度,并与依赖冠层吸收光的植物生理过程(例如ET和光合作用)高度相关。现在已经为许多单独的作物开发了基于反射的作物系数,包括玉米,小麦,苜蓿,棉花,马铃薯,甜菜,蔬菜,葡萄和果园作物。其他研究表明,VI可以用于预测混合作物田间的ET,从而可以将它们用于监测整个灌溉区的ET。基于VI的作物系数可以通过使灌溉速率与作物生长时的实际需水量相匹配,而不是与在最佳条件下生长的模拟作物相匹配,来帮助减少农业用水。最近,该概念已使用Terra卫星上MODIS传感器的时间序列卫星数据应用于本地,区域和大陆测量尺度的自然生态系统。 VI或其他可见近红外波段算法与气象数据相结合,可预测从沙漠到北极苔原再到热带雨林等多种生物群落类型的ET。这些方法通常与在涡流协方差水分和碳通量塔的全球FluxNet阵列上在地面上测得的ET紧密匹配。 VI方法估算ET的主要优点是蒸腾作用与植物冠层吸收的辐射密切相关,而后者与VI密切相关。主要缺点是它们无法捕获应力效应或土壤蒸发。版权所有©2011 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号