首页> 外文期刊>Hydrological Processes >Spatial patterns of groundwater-lake exchange – implications for acid neutralization processes in an acid mine lake
【24h】

Spatial patterns of groundwater-lake exchange – implications for acid neutralization processes in an acid mine lake

机译:地下水-湖泊交换的空间格局-对酸性矿山湖中酸中和过程的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Exchange of groundwater and lake water with typically quite different chemical composition is an important driver fornbiogeochemical processes at the groundwater-lake interface, which can affect the water quality of lakes. This is of particularnrelevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH<3). Tonidentify links between groundwater-lake exchange rates and acid neutralization processes in the sediments, exchange rates werenquantified and related to pore-water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment.nSeepage rates measured with seepage meters (u00012.5 to 5.8 L m-2 d-1) were in reasonable agreement with rates inverted fromnmodeled chloride profiles (u00011.8 to 8.1 L m-2 d-1). Large-scale exchange patterns were defined by the (hydro)geologic setting butnsuperimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwellingn(flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloridenprofiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found toninfluence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton-consumingnprocesses, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reductionnrates were significantly higher at upwelling (>330 nmol g-1 d-1) compared to alternating sites (<220 nmol g-1 d-1). Althoughndifferences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to thenprevailing groundwater-lake exchange patterns and the associated pH conditions. Our findings strongly suggest thatngroundwater-lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such asnacidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.
机译:具有通常完全不同的化学组成的地下水和湖泊水的交换是地下水与湖泊界面处生物地球化学过程的重要驱动力,这会影响湖泊的水质。这在矿井中尤为重要,在矿井中,缺氧和微酸性的地下水与含氧和酸性的湖水(pH <3)混合。为了确定沉积物中地下水-湖水交换速率与酸中和过程之间的联系,对交换速率进行了量化,并与孔隙水pH,硫酸盐和铁浓度以及沉积物中的硫酸盐还原速率相关。n用渗流计测量的渗透率(u00012。 5至5.8 L m-2 d-1)与从模拟氯离子分布(u00011.8至8.1 L m-2 d-1)倒置的速率基本吻合。大规模的交换模式是由(水文)地质环境确定的,但由于沉积物质地的变化而引起的较小尺度的变化却被叠加。确定了以地下水上升流(流入湖泊)为特征的地点以及流动在上升流和下降流之间交替的地点。在交替位置观察到的氯化物分布反映了瞬时流动状态。可以发现渗透方向以及渗透速率,其中包括对pH,硫酸盐和铁离子的影响,以及相关的硫酸盐还原速率。在交替条件下,质子消耗过程(例如硫酸盐的还原)减慢了。在沉积物的最上层(最大5厘米),与交替位置(<220 nmol g-1 d-1)相比,上升流处的硫酸盐还原率(> 330 nmol g-1 d-1)明显更高。尽管不能仅通过不同的通量率来解释硫酸盐还原率的差异,但它们显然与当时普遍存在的地下水-湖泊交换模式和相关的pH条件有关。我们的发现强烈表明,地下水-湖泊交换对生物地球化学过程具有重要影响,而该过程与硫酸盐还原(例如酸度保留和硫化铁的沉淀)相关。版权所有©2012 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号